MHB F(x)=ab^{x} where b must be a positive real number

  • Thread starter Thread starter Avalance789
  • Start date Start date
  • Tags Tags
    Positive
Avalance789
Messages
13
Reaction score
0
Quote: "In mathematics, an exponential function is a function of the form

f(x)=ab^{x}

where b is a POSITIVE REAL number"

Wait. Give me a reason, why exponent base must be positive and real?

What happens if b<0?
 
Mathematics news on Phys.org
Avalance789 said:
Quote: "In mathematics, an exponential function is a function of the form

f(x)=ab^{x}

where b is a POSITIVE REAL number"

Wait. Give me a reason, why exponent base must be positive and real?

What happens if b<0?
What happens if b = -1 and x = 1/2?

-Dan
 
It means sqrt{-1}?

Отправлено с моего SM-A750FN через Tapatalk
 
Avalance789 said:
It means sqrt{-1}?

Отправлено с моего SM-A750FN через Tapatalk
Exactly. And as i is not real number we can't use it for what you seem to be working with.

-Dan
 
Ok, got it. So from this point we get into complex numbers.

Thank you!

Отправлено с моего SM-A750FN через Tapatalk
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top