Factoring algebraic complex expression

  • Thread starter Maxo
  • Start date
  • #1
160
1

Homework Statement


Factor the expression ac-bd+adi+bci

Homework Equations




The Attempt at a Solution


We can factor the variable 'a' which gives:
a(c+di)-bd+bci
The common factor in the remaing terms is b, and if we also factor out b we get
a(c+di)-b(d+ci)

But this is not the way I want it factorized. I want it to be factored completely. How can that be done step by step?
 

Answers and Replies

  • #2
954
117
The common factor in the remaing terms is b, and if we also factor out b we get
a(c+di)-b(d-ci)
Do you realise the similarity between the factors (c+di) and (d-ci)? How can you make them the same?
 
Last edited:
  • #3
160
1
Do you realise the similarity between the factors (c+di) and (d-ci)? How can you make them the same?
I made a misstake, it should be a(c+di)-b(d-ci). Anyway so you're saying (c+di) and (d-ci) can be made the same. I actually don't see how that could be done? I mean both the real and the imaginary parts of these expressions are different. How are they the same?
 
  • #4
954
117
Maybe I wasn't very clear with what I meant by "make the same", but what I was trying to convey is identifying the common factor between these two terms. Notice that they differ by a factor of i
 
  • #5
pbuk
Science Advisor
Gold Member
2,332
1,056
For your second step, factor out bi instead of just b. Be more careful with signs and brackets.
 
  • #6
160
1
Now I see it :)

Is there some rule (algorithm) / procedure to follow when factoring like this?
 

Related Threads on Factoring algebraic complex expression

Replies
3
Views
21K
  • Last Post
Replies
4
Views
2K
  • Last Post
Replies
9
Views
2K
  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
11
Views
1K
Replies
4
Views
13K
Replies
14
Views
4K
  • Last Post
Replies
1
Views
1K
  • Last Post
Replies
3
Views
783
Replies
2
Views
2K
Top