MHB Factoring Polynomials: Start Here

paulmdrdo1
Messages
382
Reaction score
0
how would i start factoring this

$m^8-n^8-2m^6n^2+2n^6m^2$
 
Mathematics news on Phys.org
Re: factoring polynomial

You really need to post your attempts at these, this way we can see where you are at. :D

I would look at factoring the first two terms as the difference of squares, and the last two terms have a common factor as well (I would factor out $-2m^2n^2$)...what do you get?
 
Re: factoring polynomial

this is where i can get to

$(m^4+n^4)(m^4-n^4)-2n^2m^2(m^4-n^4)$

$(m^2-n^2)(m^2+n^2)(m^4+n^4)-2n^2m^2(m^2-n^2)(m^2+n^2)$

$(m-n)(m+n)(m^2+n^2)(m^4+n^4)-2n^2m^2(m-n)(m+n)(m^2+n^2)$
 
Re: factoring polynomial

I would take this path:

$$\left(m^4+n^4 \right)\left(m^4-n^4 \right)-2m^2n^2\left(m^4-n^4 \right)$$

$$\left(m^4-n^4 \right)\left(m^4-2m^2n^2+n^4 \right)$$

Do you recognize that the second factor is a square of a binomial?
 
Re: factoring polynomial

yes this is answer

$(m-n)^{3}(m+n)^{3}(m^2+n^2)$
 
Re: factoring polynomial

paulmdrdo said:
yes this is answer

$(m-n)^{3}(m+n)^{3}(m^2+n^2)$

Yes, good job! (Sun)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top