Factoring With Negative Powers

  • Context: MHB 
  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Factoring Negative
Click For Summary
SUMMARY

The expression (x^2 + 1)^(-2/3) + (x^2 + 1)^(-5/3) can be factored by extracting the term with the smaller exponent, resulting in (x^2 + 1)^(-5/3) * [(x^2 + 1) + 1]. The correct factorization simplifies to (x^2 + 1)^(-5/3) * (x^2 + 2). This method demonstrates the importance of identifying the smallest exponent for efficient factoring.

PREREQUISITES
  • Understanding of exponent rules in algebra
  • Familiarity with polynomial expressions
  • Knowledge of factoring techniques
  • Basic skills in simplifying algebraic expressions
NEXT STEPS
  • Study advanced factoring techniques in algebra
  • Learn about polynomial long division
  • Explore the properties of negative exponents
  • Practice factoring complex expressions with varying exponents
USEFUL FOR

Students and educators in mathematics, particularly those focusing on algebra and polynomial factoring techniques.

mathdad
Messages
1,280
Reaction score
0
Factor

(x^2 + 1)^(-2/3) + (x^2 + 1)^(-5/3)

Solution:

(x^2 + 1)^(-2/3)[1 + (x^2 + 1)^(2/5)]

Yes?
 
Mathematics news on Phys.org
We are given to factor:

$$\left(x^2+1\right)^{-\frac{2}{3}}+\left(x^2+1\right)^{-\frac{5}{3}}$$

So, we factor out the expression with the smaller exponent, observing that $$-\frac{5}{3}<-\frac{2}{3}$$...and then we subtract that exponent:

$$\left(x^2+1\right)^{-\frac{5}{3}}\left(\left(x^2+1\right)^{-\frac{2}{3}-\left(-\frac{5}{3}\right)}+\left(x^2+1\right)^{-\frac{5}{3}-\left(-\frac{5}{3}\right)}\right)$$

Now, simplify the exponents:

$$\left(x^2+1\right)^{-\frac{5}{3}}\left(\left(x^2+1\right)^{\frac{3}{3}}+\left(x^2+1\right)^{0}\right)$$

$$\left(x^2+1\right)^{-\frac{5}{3}}\left(\left(x^2+1\right)+1\right)$$

$$\left(x^2+1\right)^{-\frac{5}{3}}\left(x^2+2\right)$$
 
I selected the wrong smallest power.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
990
  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K