I Fermi energy for a Fermion gas with a multiplicity function ##g_n##

Click For Summary
The discussion revolves around calculating the Fermi energy and average energy for a gas of N fermions with energy levels characterized by a multiplicity function g_n = (n+1)^2. The average occupation number for each energy level is expressed using the Fermi-Dirac distribution. Unlike fixed degeneracy systems, the variable multiplicity complicates the calculation of total particle number, requiring integration over energy states. The density of states, which incorporates the multiplicity factor, plays a crucial role in the analysis. Ultimately, as N approaches infinity, the energy levels become continuous, allowing for a similar integral approach to find the average energy.
phos19
Messages
6
Reaction score
0
TL;DR
Fermi energy for arbitrary multiplicity
I ran across the following problem :

Statement:

Consider a gas of ## N ## fermions and suppose that each energy level ## \varepsilon_n## has a multiplicity of ## g_n = (n+1)^2 ##. What is the Fermi energy and the average energy of this gas when ## N \rightarrow \infty## ?

My attempt:

The average occupation number for a state of the ##n##th level is:

$$\langle N_n \rangle = \dfrac{1}{ e^{\beta(\varepsilon_n + \mu)} + 1 }$$

Usually if the system has a fixed degeneracy, say only the spin degeneracy ##g = 2s +1## , one can write the total number of particles ##N## as an integral over ##\vec{p}##:

$$
N = \sum_n \langle N_n \rangle = \dfrac{gV}{h^3} \int d^3 p \ \dfrac{1}{ e^{\beta(\varepsilon_p + \mu)} + 1 }
$$

One can than find the Fermi energy in the limit ##T \rightarrow 0##.

But this is not the case when ##g = g(n)##... Any hints on how to do this ?
 
Last edited by a moderator:
Physics news on Phys.org
The generic equation for the total number of fermions is
$$
N = \int_0^\infty f(\varepsilon) D(\varepsilon) d\varepsilon
$$
where
$$
f(\varepsilon) = \frac{1}{e^{\beta(\varepsilon + \mu)} + 1}
$$
is the Fermi-Dirac distribution and ##D(\varepsilon)## is the density of states. The degeneracy factor ##g## is part of the density of states, so it will stay inside the integral if is dependent on ##n## (so dependent on ##\varepsilon##).

You should however be looking at the equation for the average energy. In the limit ##N \rightarrow \infty##, the energy levels can be considered continuous and an integral similar to the one above is obtained.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...