- #1
- 31
- 1
I am studyng the deduction of Fermi-Dirac and Bose-Einstein distribution, but I'm not understanding one part. If we have a system of ##N## identical non-interaction particles, with energies levels ##\varepsilon _{l}## and occupation number ##n_{l}## (this is the number of particles with the same energy ##\varepsilon_{l}##), the total energy and the partion function in the canonical emsemble are $$E(\{n_{l}\}) = \sum_{l} \varepsilon _{l} n_{l}, \ \ \ Z_{N} = \sum _{\{n_{l}\}} e^{-\beta E(\{n_{l}\})} = \sum _{\{n_{l}\}}\prod _{l}e^{-\beta n_{l}\varepsilon_{l}},$$where ##\{n_{l}\}## means tha the sum is over all possible sets of values of number occupations, such that ##\sum_{l} n_{l} = N##. Now, the partion function in the grand canonical emsemble is $$Q = \sum _{N} e^{\beta \mu N} Z_{N}.$$ The book I am reading say that this is equal to $$Q = \prod _{l} \sum _{n_{l}}[e^{-\beta(\varepsilon - \mu)}]^{n_{l}}$$ but I don't understand why. Note that the sum passed from a sum over the set ##\{n_{l}\}## to a sum over the values of ##n_{l}##.