It is nothing more than mathematical convenience. In a general non-inertial frame the second law of motion for a particle ##P## is modified to ##\mathbf{F} = m[\mathbf{A} + \dot{\boldsymbol{\Omega}} \times \boldsymbol{x}' + 2\boldsymbol{\Omega} \times \mathbf{v}' + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{x}') + \mathbf{a}']##, where ##\boldsymbol{x}' = \overrightarrow{O'P}##, ##\mathbf{v}' = (\mathrm{d}\boldsymbol{x}'/ \mathrm{d}t) \big{|}_{O'x'y'z'}## and ##\mathbf{a}' = (\mathrm{d}\mathbf{v}'/ \mathrm{d}t) \big{|}_{O'x'y'z'}## are the position, velocity and acceleration of the particle with respect to the non-inertial frame ##O'x'y'z'##, and ##\mathbf{A}## and ##\boldsymbol{\Omega}## are the linear acceleration and angular velocity of ##O'x'y'z'## with respect to ##Oxyz##.
Now suppose that the angular acceleration of ##O'x'y'z'## relative to ##Oxyz## is zero , i.e. ##\dot{\boldsymbol{\Omega}} = 0##, and further that ##O'## does not accelerate with respect to ##O##, i.e. ##\mathbf{A} = 0##. Consider the resulting equation of motion in the non-inertial frame, and then take the scalar product of both sides with ##\mathbf{v}'##,\begin{align*}
\mathbf{F} &= m[2\boldsymbol{\Omega} \times \mathbf{v}' + \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{x}') + \mathbf{a}'] \\
\implies \mathbf{v}' \cdot \mathbf{F} &= m[\mathbf{v}' \cdot \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{x}') + \mathbf{v}' \cdot \mathbf{a}'] \quad \quad \quad (1)
\end{align*}since ##\mathbf{v}' \cdot (\boldsymbol{\Omega} \times \mathbf{v}') = 0##. By a vector identity we can re-write ##\boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{x}') = (\boldsymbol{\Omega} \cdot \boldsymbol{x}') \boldsymbol{\Omega} - \Omega^2 \boldsymbol{x}'##, hence\begin{align*}
\mathbf{v}' \cdot \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{x}') &= (\boldsymbol{\Omega} \cdot \mathbf{v}')(\boldsymbol{\Omega} \cdot \boldsymbol{x}') - \Omega^2 \mathbf{v}' \cdot \boldsymbol{x}' \\
&= \frac{\mathrm{d}}{\mathrm{d}t} \left[ \frac{1}{2} (\boldsymbol{\Omega} \cdot \boldsymbol{x}')^2 - \frac{1}{2} \Omega^2 \boldsymbol{x}' \cdot \boldsymbol{x}' \right]\end{align*}We can also re-write ##m \mathbf{v}' \cdot \mathbf{a}' = \frac{m}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left[ \mathbf{v}' \cdot \mathbf{v}' \right] = \mathrm{d}T / \mathrm{d}t##. Thus equation ##(1)## is equivalent to\begin{align*}
\mathbf{v}' \cdot \mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} \left[ \frac{m}{2} \mathbf{v}' \cdot \mathbf{v}' + \left( \frac{m}{2} (\boldsymbol{\Omega} \cdot \boldsymbol{x}')^2 - \frac{m}{2} \Omega^2 \boldsymbol{x}' \cdot \boldsymbol{x}' \right) \right] \end{align*}Further, notice that ##\frac{m}{2} (\boldsymbol{\Omega} \cdot \boldsymbol{x}')^2 - \frac{m}{2} \Omega^2 \boldsymbol{x}' \cdot \boldsymbol{x}' = \frac{-m}{2}\Omega^2 \left( |\boldsymbol{x}'|^2 - (|\boldsymbol{x}'| \cos{\theta})^2 \right)=\frac{-1}{2} \Omega^2 md^2##, where ##d = \sqrt{|\boldsymbol{x}'|^2 - (|\boldsymbol{x}'| \cos{\theta})^2}## is the perpendicular distance of the particle from the axis (##O', \boldsymbol{\Omega}##). And since ##I := md^2## is the moment of inertia of the particle about this axis, the equation may be re-written in the simple form\begin{align*}
\mathbf{v}' \cdot \mathbf{F} = \frac{\mathrm{d}}{\mathrm{d}t} \left[ T - \frac{1}{2}I \Omega^2 \right]
\end{align*}And the ##\varphi_R := \frac{-1}{2}I \Omega^2## term can be identified as a "centrifugal potential energy" term. Further, suppose that the real force ##\mathbf{F}## can be expressed as ##\mathbf{F} = - \nabla_{\boldsymbol{x}'} U##. In such cases, ##\mathbf{v}' \cdot \mathbf{F} = - \mathbf{v}' \cdot \nabla_{\boldsymbol{x}'} U = - \mathrm{d}U/\mathrm{d}t##. Thus, integrating and re-arranging, you'd obtain\begin{align*}
T + \left[\varphi_R + U\right] := T + V = E
\end{align*}where ##E## is the constant of integration, and ##V := \varphi_R + U## is the effective potential energy of the system.