MHB Find a Bounded, Decreasing $\displaystyle f(x)$

  • Thread starter Thread starter alexmahone
  • Start date Start date
  • Tags Tags
    Bounded decreasing
alexmahone
Messages
303
Reaction score
0
Find an $\displaystyle f(x)$ such that $\displaystyle \frac{1}{f(x)}$ is defined for all $\displaystyle x$ and is bounded, but $\displaystyle f(x)$ is decreasing.
 
Last edited:
Physics news on Phys.org
This is not hard. Obviously, we must have f(x) ≠ 0 and moreover f(x) must be separated from 0, i.e., for some ε we must have |f(x)| > ε for all x.
 
Evgeny.Makarov said:
This is not hard. Obviously, we must have f(x) ≠ 0 and moreover f(x) must be separated from 0, i.e., for some ε we must have |f(x)| > ε for all x.

I'm still not able to find such a function. :(
 
Alexmahone said:
Find an $\displaystyle f(x)$ such that $\displaystyle \frac{1}{f(x)}$ is defined for all $\displaystyle x$ and is bounded, but $\displaystyle f(x)$ is decreasing.

what is the domain of the function ? all real numbers ?
 
Amer said:
what is the domain of the function ? all real numbers ?

Yes.
 
Alexmahone said:
I'm still not able to find such a function.
You can't find a decreasing function whose graph lies outside the band $\{(x,y):|y|\le\varepsilon\}$? If you don't know a precise formula, can you at least describe how such function behaves?
 
Evgeny.Makarov said:
You can't find a decreasing function whose graph lies outside the band $\{(x,y):|y|\le\varepsilon\}$? If you don't know a precise formula, can you at least describe how such function behaves?

Since $\displaystyle f(x)$ is decreasing, $\displaystyle \frac{1}{f(x)}$ is increasing. But $\displaystyle \frac{1}{f(x)}$ is also bounded. So, it must approach a certain limit as $\displaystyle {x\to\infty}$.
 
How about $f = 1 + e^{-x}$?
 
Alexmahone said:
Since $\displaystyle f(x)$ is decreasing, $\displaystyle \frac{1}{f(x)}$ is increasing. But $\displaystyle \frac{1}{f(x)}$ is also bounded. So, it must approach a certain limit as $\displaystyle {x\to\infty}$.
Yes, but I was asking really about f(x). Here are the possible behaviors of f(x).

function.png
 
Back
Top