MHB Find A in abcd=A(four digital number) is a perfect square ,given ab=2cd+1

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Digital Square
Click For Summary
The problem involves finding a four-digit number \( A \) that is a perfect square, given the condition that \( \overline{ab} = 2\overline{cd} + 1 \). Participants discuss the implications of the equation and how it relates to the digits of \( A \). The relationship between \( ab \) and \( cd \) is crucial for determining valid values for \( A \). Various mathematical approaches and examples are explored to derive potential solutions. The discussion emphasizes the need for systematic testing of perfect squares within the specified range.
Albert1
Messages
1,221
Reaction score
0
$\overline{abcd}=A$(four digital nmber) is a perfect square ,given $\overline{ab}=2\overline{cd}+1$
find $A=?$
 
Mathematics news on Phys.org
My solution:

We may state:

$$(20c+2d+1)100+10c+d=n^2$$

or:

$$67(30c+3d)=(n+10)(n-10)$$

Let's let $n=77$ so we have:

$$67(30c+3d)=87\cdot67$$

Hence:

$$30c+3d=87$$

$$10c+d=29=10\cdot2+9$$

Thus we see we have:

$$c=2,\,d=9\implies a=5,\,b=9$$

And so:

$$A=5929=77^2$$
 
My solution:

Let $x=\overline{ab}$, $y=\overline{cd}$, and $A=n^2$.

Then:
$$A=100x+y = n^2 \land x=2y+1 \quad\Rightarrow\quad
100(2y+1)+y=n^2 \quad\Rightarrow\quad
3\cdot 67 \cdot y=(n-10)(n+10)
$$
Since $67$ is prime, it must divide either $n-10$ or $n+10$.
Since $n$ must be a 2-digit number, we conclude:
$$n-10=67 \lor n+10 = 67 \quad\Rightarrow\quad n=57 \land n=77$$
Only $A=77^2=5929$ satisfies the condition, so that is the one and only solution. (Smile)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K