MHB Find a real number for a continuous function

Click For Summary
To find a real number f for the continuous piecewise function, the two expressions must be equal at x=0. This leads to the equation -2f = 5f^2, which simplifies to the quadratic equation 5f^2 + 2f = 0. The solutions to this equation are f = 0 or f = -2/5. Thus, the real values of f that ensure the function is continuous are 0 and -2/5. The discussion emphasizes the importance of continuity at the boundary of the piecewise function.
Maxers99
Messages
2
Reaction score
0
How would I go about doing this?

Find a real number f so that: is a continuous function

y = { 3x - 2f if x is less than or equal to 0. }
{ 2x2 + x + 5f2 if x is less than 0 }
 
Mathematics news on Phys.org
Hi Maxers99, welcome to MHB!:)

I am pretty sure you mean the domain for the second function is set for $x>0$, i.e. what we have here is the following piece-wise function:

$\displaystyle y(x)=\begin{cases}3x-2f & x\le0\\2x^2+x+5f^2 & x>0\\ \end{cases}$

Since $y$ is a continuous function, so at $x=0$, the two expressions must be equal. Can you proceed with this little hint?
 
At the risk of being somewhat redundant, to put what anemone has stated in the parlance of limits, we require:

$$\lim_{x\to0^{-}}(3x-2f)=\lim_{x\to0^{+}}\left(2x^2+x+5f^2 \right)$$
 
So if x=0, it would then be -2f = 5f^2
 
Maxers99 said:
So if x=0, it would then be -2f = 5f^2

Correct!:)

But bear in mind that we are asked to find the real values of $f$. So now we have the quadratic equation in terms of $f$, i.e.

$-2f = 5f^2$

or

$ 5f^2+2f=0$

do you know how to solve this quadratic equation for $f$?
 
anemone said:
Correct!:)

But bear in mind that we are asked to find the real values of $f$. So now we have the quadratic equation in terms of $f$, i.e.

$-2f = 5f^2$
At this point, either f= 0 or we can divide both sides by f.

or

$ 5f^2+2f=0$

do you know how to solve this quadratic equation for $f$?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
1K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
3
Views
2K