MHB Find al the four-digit numbers ABCD

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Numbers
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all the four-digit numbers $ABCD$ which when multiplied by $4$ give a product equal to the number with the digits reversed, $DCBA$. (The digits do not need to be different.)
 
Mathematics news on Phys.org
anemone said:
Find all the four-digit numbers $ABCD$ which when multiplied by $4$ give a product equal to the number with the digits reversed, $DCBA$. (The digits do not need to be different.)

A has to be < 3 because 3* 4 = 12 so RHS is a 5 digit number
A cannot be 1 as from RHS A has to be even.
So A has to be 2.
now $B$ can be an odd digit $B \lt 5$ because $4*25 = 100$ that is 5 digit
So $AB = 21 / 23$
if $AB = 23$ $DC \ge 92$ so $D = 9$ which is not possible as $4*8$ is $2$ ending but $4*9$ is not.
$AB = 21$
So $D = 8$
so the number = $4*(2108+10C) = 8032+100C$
or $8432+40C = 8012+ 100C$
or $60C = 420$
so $C =7$
so number = $2178*4 = 8712$ or $ABCD=2178$
 
Last edited:
Well done Kali! And thanks for participating!
 
Hello, anemone!

Find all the four-digit numbers ABCD which, when multiplied by 4,
give a product equal to the number with the digits reversed, $DCBA$.
We have: \;\;\begin{array}{cccc}_1&amp;_2&amp;_3&amp;_4 \\<br /> A&amp;B&amp;C&amp;D \\<br /> \times &amp;&amp;&amp; 4 \\<br /> \hline D&amp;C&amp;B&amp;A<br /> \end{array}

In column-1: \;4\!\cdot\!A\text{ (plus &#039;carry&#039;)} \,=\, D
. . Hence, A = 1\text{ or }2.

In column-4: \;4\!\cdot\!D\text{ ends in }A, an even digit.
. . Hence, A =2.

And it follow that D = 8.

We have: \;\;\begin{array}{cccc}_1&amp;_2&amp;_3&amp;_4 \\<br /> 2&amp;B&amp;C&amp;8 \\<br /> \times &amp;&amp;&amp; 4 \\<br /> \hline 8&amp;C&amp;B&amp;2<br /> \end{array}

There is no 'carry' from column-2.
. Hence, B =0\text{ or }1.

In column-3, 4\!\cdot\!C + 3\text{ ends in }B,\text{ an odd digit.}
. Hence, B = 1\text{ and }C =7.

Therefore:\;\begin{array}{cccc}<br /> 2&amp;1&amp;7&amp;8 \\<br /> \times &amp;&amp;&amp; 4 \\<br /> \hline 8&amp;7&amp;1&amp;2<br /> \end{array}

 
soroban said:
Hello, anemone!


We have: \;\;\begin{array}{cccc}_1&amp;_2&amp;_3&amp;_4 \\<br /> A&amp;B&amp;C&amp;D \\<br /> \times &amp;&amp;&amp; 4 \\<br /> \hline D&amp;C&amp;B&amp;A<br /> \end{array}

In column-1: \;4\!\cdot\!A\text{ (plus &#039;carry&#039;)} \,=\, D
. . Hence, A = 1\text{ or }2.

In column-4: \;4\!\cdot\!D\text{ ends in }A, an even digit.
. . Hence, A =2.

And it follow that D = 8.

We have: \;\;\begin{array}{cccc}_1&amp;_2&amp;_3&amp;_4 \\<br /> 2&amp;B&amp;C&amp;8 \\<br /> \times &amp;&amp;&amp; 4 \\<br /> \hline 8&amp;C&amp;B&amp;2<br /> \end{array}

There is no 'carry' from column-2.
. Hence, B =0\text{ or }1.

In column-3, 4\!\cdot\!C + 3\text{ ends in }B,\text{ an odd digit.}
. Hence, B = 1\text{ and }C =7.

Therefore:\;\begin{array}{cccc}<br /> 2&amp;1&amp;7&amp;8 \\<br /> \times &amp;&amp;&amp; 4 \\<br /> \hline 8&amp;7&amp;1&amp;2<br /> \end{array}

Good job, soroban! (Yes)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top