Find all functions satisfying f(mn)=f(m)f(n), and m+n|f(m)+f(n)

  • Context: MHB 
  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Functions
Click For Summary

Discussion Overview

The discussion revolves around finding all functions \( f: \mathbb{N} \rightarrow \mathbb{N} \) that satisfy the conditions \( f(mn) = f(m)f(n) \) and \( m+n \mid f(m) + f(n) \) for all natural numbers \( m \) and \( n \). The scope includes mathematical reasoning and exploration of potential solutions.

Discussion Character

  • Exploratory, Mathematical reasoning

Main Points Raised

  • Some participants propose that odd powers of \( n \) satisfy the given properties, noting the relationships \( (mn)^k = m^k n^k \) and \( (m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k \) for odd integers \( k \).
  • Participants express uncertainty about whether these odd powers are the only solutions to the problem.
  • A participant points out a potential typo in the earlier posts, suggesting that there may be errors in the formulation or presentation of the problem.

Areas of Agreement / Disagreement

There is no consensus on whether odd powers of \( n \) are the only solutions, as some participants acknowledge the possibility of other solutions existing.

Contextual Notes

The discussion does not clarify the implications of the conditions or the nature of the functions being sought, leaving open questions regarding definitions and the completeness of the proposed solutions.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all functions, $f: \mathbb{N}\rightarrow \mathbb{N}$, satisfying

\[f(mn)=f(m)f(n),\: \: \: and \: \: \: m+n \: \: |\: \: f(m)+f(n)\]for all $m,n \in \mathbb{N}$.
 
Mathematics news on Phys.org
lfdahl said:
Find all functions, $f: \mathbb{N}\rightarrow \mathbb{N}$, satisfying

\[f(mn)=f(m)f(n),\: \: \: and \: \: \: m+n \: \: |\: \: f(m)+f(n)\]for all $m,n \in \mathbb{N}$.

by putting m = 1 we get $f(n) = f(1) f(n)$ so $f(1) = 1$

now 1 + n is a factor of 1 + f(n) so by inspection f(n) = n. I do not have a proof of the same
 
Last edited:
kaliprasad said:
by putting m = 1 we get $f(n) = f(1) f(n)$ so $f(1) = 1$

now 1 + n is a factor of 1 + f(n) so by inspection f(n) = n. I do not have a proof of the same
[sp]Odd powers of $n$ also have this property: $(mn)^k = m^kn^k$, and $(m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k)$ if $k$ is an odd integer.

I have not thought about whether these are the only solutions.
[/sp]
 
Opalg said:
[sp]Odd powers of $n$ also have this property: $(mn)^k = m^kn^k$, and $(m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k)$ if $k$ is an odd integer.

I have not thought about whether these are the only solutions.
[/sp]

Right
 
Opalg said:
[sp]Odd powers of $n$ also have this property: $(mn)^k = m^kn^k$, and $(m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k)$ if $k$ is an odd integer.

I have not thought about whether these are the only solutions.
[/sp]

there is a typo in above

$(m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k)$

should be

$m^k+n^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^{k-1})$
 
Suggested solution:
As kaliprasad noted: $f(1) = 1$. So, $2n+1 \;\; | \;\; f(2n) + f(1) = f(2) \cdot f(n) + 1 \Rightarrow gcd(2n+1,f(2)) = 1$ for all $n$. This means, that $f(2)$ has no odd prime divisor, so $f(2) = 2^k$. Furthermore, $3 \;\; | 1 + f(2) = 1 + 2^k \Rightarrow k$ is odd (as Opalg noted). Also note, $f(2^m) = f(2) \cdot f(2) \cdot … \cdot f(2) = 2^{km}$ for all $m$. Now, for all $m$ and $n$, $2^m+n \;\; | \;\; f(2^{m}) + f(n) = 2^{km} + f(n)$. But $k$ is odd, so $2^m+n \;\; | \;\; 2^{km} + n^k$. Thus $2^m+n \;\; | \;\; f(n)-n^k$. But this is valid for all $m$, so $f(n) – n^k = 0 \Rightarrow f(n) = n^k.$
We have now proven, that $f(n) = n^k$ for all $n$ for some fixed odd number $k$. On the other hand, it is easily seen that functions of this form satisfy the given conditions.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
665
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
Replies
10
Views
2K
  • · Replies 28 ·
Replies
28
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K