MHB Find all functions satisfying f(mn)=f(m)f(n), and m+n|f(m)+f(n)

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Functions
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Find all functions, $f: \mathbb{N}\rightarrow \mathbb{N}$, satisfying

\[f(mn)=f(m)f(n),\: \: \: and \: \: \: m+n \: \: |\: \: f(m)+f(n)\]for all $m,n \in \mathbb{N}$.
 
Mathematics news on Phys.org
lfdahl said:
Find all functions, $f: \mathbb{N}\rightarrow \mathbb{N}$, satisfying

\[f(mn)=f(m)f(n),\: \: \: and \: \: \: m+n \: \: |\: \: f(m)+f(n)\]for all $m,n \in \mathbb{N}$.

by putting m = 1 we get $f(n) = f(1) f(n)$ so $f(1) = 1$

now 1 + n is a factor of 1 + f(n) so by inspection f(n) = n. I do not have a proof of the same
 
Last edited:
kaliprasad said:
by putting m = 1 we get $f(n) = f(1) f(n)$ so $f(1) = 1$

now 1 + n is a factor of 1 + f(n) so by inspection f(n) = n. I do not have a proof of the same
[sp]Odd powers of $n$ also have this property: $(mn)^k = m^kn^k$, and $(m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k)$ if $k$ is an odd integer.

I have not thought about whether these are the only solutions.
[/sp]
 
Opalg said:
[sp]Odd powers of $n$ also have this property: $(mn)^k = m^kn^k$, and $(m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k)$ if $k$ is an odd integer.

I have not thought about whether these are the only solutions.
[/sp]

Right
 
Opalg said:
[sp]Odd powers of $n$ also have this property: $(mn)^k = m^kn^k$, and $(m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k)$ if $k$ is an odd integer.

I have not thought about whether these are the only solutions.
[/sp]

there is a typo in above

$(m+n)^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^k)$

should be

$m^k+n^k = (m+n)(m^{k-1} - m^{k-2}n + \ldots + n^{k-1})$
 
Suggested solution:
As kaliprasad noted: $f(1) = 1$. So, $2n+1 \;\; | \;\; f(2n) + f(1) = f(2) \cdot f(n) + 1 \Rightarrow gcd(2n+1,f(2)) = 1$ for all $n$. This means, that $f(2)$ has no odd prime divisor, so $f(2) = 2^k$. Furthermore, $3 \;\; | 1 + f(2) = 1 + 2^k \Rightarrow k$ is odd (as Opalg noted). Also note, $f(2^m) = f(2) \cdot f(2) \cdot … \cdot f(2) = 2^{km}$ for all $m$. Now, for all $m$ and $n$, $2^m+n \;\; | \;\; f(2^{m}) + f(n) = 2^{km} + f(n)$. But $k$ is odd, so $2^m+n \;\; | \;\; 2^{km} + n^k$. Thus $2^m+n \;\; | \;\; f(n)-n^k$. But this is valid for all $m$, so $f(n) – n^k = 0 \Rightarrow f(n) = n^k.$
We have now proven, that $f(n) = n^k$ for all $n$ for some fixed odd number $k$. On the other hand, it is easily seen that functions of this form satisfy the given conditions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top