MHB Find All Possible Values of $AD$ in Cyclic Quadrilateral

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cyclic
AI Thread Summary
In the cyclic quadrilateral $ABCD$ with equal sides $AB=BC=CA$, the diagonals $AC$ and $BD$ intersect at point $E$. Given the lengths $BE=19$ and $ED=6$, the problem requires finding all possible values of $AD$. Using the properties of cyclic quadrilaterals and the intersecting chords theorem, the relationship between the segments can be established. The calculations lead to potential values for $AD$, which can be derived from the known lengths and geometric properties. The solution ultimately reveals the possible lengths for side $AD$ in this configuration.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
$ABCD$ is a cyclic quadrilateral such that $AB=BC=CA$. Diagonals $AC$ and $BD$ intersect at $E$. Given that $BE=19$ and $ED=6$, find all the possible values of $AD$.
 
Mathematics news on Phys.org
[TIKZ]
\draw circle (4) ;
\coordinate [label=left:$A$] (A) at (210:4) ;
\coordinate [label=above:$B$] (B) at (90:4) ;
\coordinate [label=right:$C$] (C) at (330:4) ;
\coordinate [label=below:$D$] (D) at (290:4) ;
\coordinate [label=above right:$E$] (E) at (intersection of A--C and B--D) ;
\draw (A) -- (B) -- node[ right ]{$x$} (C) -- (D) -- (A) --(C) ;
\draw (B) -- node[ right ]{$19$} (E) -- node[ right ]{$6$} (D) ;
\draw (-0.1,3.3) node{$\theta$} ;[/TIKZ]
Let $x$ be the side length of the equilateral triangle $ABC$, and $\theta$ the angle $ABD$, as in the diagram.

By the sine rule in triangle $ABE$, $\dfrac{19}{\sin 60^\circ} = \dfrac x{\sin(\theta+60^\circ)}$.

By the sine rule in triangle $ABD$, $\dfrac{x}{\sin 60^\circ} = \dfrac {25}{\sin(\theta+60^\circ)} = \dfrac{AD}{\sin\theta}$.

Therefore $\dfrac{19}x = \dfrac x{25}$ and hence $x = 5\sqrt{19}$. Then $\sin(\theta+60^\circ) = \dfrac{25\sin60^\circ}x = \dfrac {5\sqrt3}{2\sqrt{19}}$ and $\sin^2(\theta+60^\circ) = \dfrac{75}{76}$. So $\cos^2(\theta+60^\circ) = \dfrac{1}{76}$ and $\cos(\theta+60^\circ) = \pm\dfrac1{2\sqrt{19}}.$ It follows that $$\begin{aligned}\sin\theta = \sin((\theta+60^\circ) - 60^\circ) &= \sin(\theta+60^\circ)\cos60^\circ - \cos(\theta+60^\circ)\sin60^\circ \\ &= \frac{5\sqrt3}{2\sqrt{19}}\cdot\frac12 \pm \frac1{2\sqrt{19}}\cdot\frac{\sqrt3}2 \\ &= \frac{\sqrt3}{\sqrt{19}} \text{ or } \frac{3\sqrt3}{2\sqrt{19}}.\end{aligned}$$ Then $x\sin\theta = 5\sqrt3$ or $\dfrac{15}2\sqrt3$, so from the above sine rule $AD = \dfrac{x\sin\theta}{\sin60^\circ} = 10$ or $15$.

The above diagram shows the longer alternative $AD = 15$, with $CD = 10$. The other alternative comes from interchanging $A$ and $C$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top