Find angle required for total internal reflection of a beam of light

Click For Summary
SUMMARY

The discussion focuses on calculating the maximum incident angle θ for light traveling through an optical fiber, defined by the equation θ = arcsin(sqrt(n1^2 - n2^2)). The indices of refraction for the glass core and coating are specified as n1 = 1.58 and n2 = 1.53, respectively. The critical angle θc is also discussed, with the relationship θc = arcsin(n1/n2). Participants clarify the derivation of the maximum angle and correct previous miscalculations regarding the sine and cosine relationships.

PREREQUISITES
  • Understanding of Snell's Law (na*sin(θa) = n1*sin(θ1))
  • Knowledge of critical angles in optics (θc = arcsin(n1/n2))
  • Familiarity with trigonometric identities, particularly sine and cosine relationships
  • Basic concepts of optical fibers and their refractive indices
NEXT STEPS
  • Research the derivation of the equation θ = arcsin(sqrt(n1^2 - n2^2)) in optical fiber contexts
  • Study the implications of total internal reflection in optical fibers
  • Learn about the application of Snell's Law in different media
  • Explore advanced optical fiber designs and their refractive index profiles
USEFUL FOR

Students studying optics, optical engineers, and professionals involved in fiber optics design and implementation will benefit from this discussion.

MrMoose
Messages
23
Reaction score
0

Homework Statement



An optical fiber consists of a glass core (index of refraction n1) surrounded by a coating (index of refration n2<n1). Suppose a beam of light enters the fiber from air at an angle θ with the fiber axis as shown in attached. (a) Show that the greatest possible value of θ for which a ray can travel down the fiber is given by θ = arcsin(sqrt(n1^2 - n2^2)). (b) If the indices of refraction of the glass and coating are 1.58 and 1.53, respectively, what is this value of the incident angle θ?

Homework Equations



na*sin(θa) = n1*sin(θ1)

Critical Angle: θc = arcsin(n1/n2)

The Attempt at a Solution



See attached for my drawing. Any angle greater than θc will cause total internal reflection so,

θo > θc

where θo = 90 - θ1

Substituting for θc

θo > arcsin(n2/n1)

Substituting for θo

90 - θ1 > arcsin(n2/n1)

Substituting for θ1

90 - arcsin(sin(θa)/n1) > arcsin(n2/n1)

Taking sine of the whole equation

1 - sin(θa/n1) > n2/n1

Solving for θa

θa < arcsin(n1-n2)

According to my calculations, this would be the maximum angle θa for which a ray can travel down the fiber. Unfortunately it's not correct.

Where do they get the sqrt(n1^2-n2^2) term?

Thanks in advance, MrMoose
 

Attachments

  • 83p011.jpg
    83p011.jpg
    24.8 KB · Views: 1,140
  • 83pic17.jpg
    83pic17.jpg
    32.2 KB · Views: 1,189
Physics news on Phys.org
MrMoose said:

Homework Statement



An optical fiber consists of a glass core (index of refraction n1) surrounded by a coating (index of refration n2<n1). Suppose a beam of light enters the fiber from air at an angle θ with the fiber axis as shown in attached. (a) Show that the greatest possible value of θ for which a ray can travel down the fiber is given by θ = arcsin(sqrt(n1^2 - n2^2)). (b) If the indices of refraction of the glass and coating are 1.58 and 1.53, respectively, what is this value of the incident angle θ?

Homework Equations



na*sin(θa) = n1*sin(θ1)

Critical Angle: θc = arcsin(n1/n2)

The Attempt at a Solution



See attached for my drawing. Any angle greater than θc will cause total internal reflection so,

θo > θc

where θo = 90 - θ1

Substituting for θc

θo > arcsin(n2/n1)

Substituting for θo

90 - θ1 > arcsin(n2/n1)

Substituting for θ1

90 - arcsin(sin(θa)/n1) > arcsin(n2/n1)

Taking sine of the whole equation

1 - sin(θa/n1) > n2/n1

Solving for θa

θa < arcsin(n1-n2)

According to my calculations, this would be the maximum angle θa for which a ray can travel down the fiber. Unfortunately it's not correct.

Where do they get the sqrt(n1^2-n2^2) term?

Thanks in advance, MrMoose

The equation in red is wrong. sin(90-ψ) is not 1-sinψ.

ehild
 
Nice, Thanks ehild! I think I got it now. Taking up from just before the incorrect equation:

90 - arcsin(sin(θa)/n1) > arcsin(n2/n1)

sin[90 - arcsin(sin(θa)/n1)] > n2/n1

using the following property for sine: sin(x-y) = sinx*cosy - cosx*siny

sin(90)*cos[arcsin(sinθa/n1)] - sin(θa)/n1*cos(90) > n2/n1

Simplifying:

cos[arcsin(sinθa/n1)] > n2/n1

using the following property for cosine: cos[arcsin(x)] = sqrt(1-x^2)

sqrt{1-[sin(θa)/n1]^2} > n2/n1

solving for θa.

θa < arcsin[sqrt(n1^2-n2^2)]

Thanks for your help!
 
Good job!

MrMoose said:
sin[90 - arcsin(sin(θa)/n1)] > n2/n1

using the following property for sine: sin(x-y) = sinx*cosy - cosx*siny

It is correct. Even simpler: the cosine of an angle θ in a right triangle is just the sine of the other angle, 90-θ. :smile:

ehild
 
MrMoose said:

Homework Statement



An optical fiber consists of a glass core (index of refraction n1) surrounded by a coating (index of refration n2<n1). Suppose a beam of light enters the fiber from air at an angle θ with the fiber axis as shown in attached. (a) Show that the greatest possible value of θ for which a ray can travel down the fiber is given by θ = arcsin(sqrt(n1^2 - n2^2)). (b) If the indices of refraction of the glass and coating are 1.58 and 1.53, respectively, what is this value of the incident angle θ?

Homework Equations



na*sin(θa) = n1*sin(θ1)

Critical Angle: θc = arcsin(n1/n2)

The Attempt at a Solution



See attached for my drawing. Any angle greater than θc will cause total internal reflection so,

θo > θc

where θo = 90 - θ1

Substituting for θc

θo > arcsin(n2/n1)

Substituting for θo

90 - θ1 > arcsin(n2/n1)

Substituting for θ1

90 - arcsin(sin(θa)/n1) > arcsin(n2/n1)


Taking sine of the whole equation

1 - sin(θa/n1) > n2/n1

Solving for θa

θa < arcsin(n1-n2)

According to my calculations, this would be the maximum angle θa for which a ray can travel down the fiber. Unfortunately it's not correct.

Where do they get the sqrt(n1^2-n2^2) term?

Thanks in advance, MrMoose

It may be painfully obvious, but how exactly was θ1 = arcsin(sin(θa)/n1) derived?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 5 ·
Replies
5
Views
6K
Replies
12
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
11K