Find Area of Polygon: Simpler Method?

  • Context: MHB 
  • Thread starter Thread starter Blandongstein
  • Start date Start date
  • Tags Tags
    Area Polygon
Click For Summary
SUMMARY

The area of a polygon formed by the points (3,5), (5,11), (14,7), (8,3), and (6,6) can be efficiently calculated using the Shoelace formula. This method simplifies the process by eliminating the need to divide the polygon into triangles. The formula is defined as \(A=\frac{1}{2}|(x_1y_2 + x_2y_3 + ... + x_ny_1) - (y_1x_2 + y_2x_3 + ... + y_nx_1)|\), yielding an area of 41.5 for the given points. Alternative methods, such as using trapezoids, were also discussed but are less efficient than the Shoelace formula.

PREREQUISITES
  • Shoelace formula for polygon area calculation
  • Basic understanding of coordinate geometry
  • Familiarity with polygon vertex notation
  • Knowledge of trapezoidal area calculations
NEXT STEPS
  • Study the derivation and applications of the Shoelace formula in various polygon types
  • Learn about coordinate geometry and its applications in computational geometry
  • Explore alternative methods for polygon area calculation, including triangulation and trapezoidal methods
  • Investigate software tools for automated polygon area calculations, such as GeoGebra or MATLAB
USEFUL FOR

Mathematicians, geometry enthusiasts, educators, and students seeking efficient methods for calculating polygon areas.

Blandongstein
Messages
8
Reaction score
0
Find the area of the polygon formed by the points (3,5), (5,11), (14,7), (8,3), and (6,6).

I can find the area of the polygon by dividing it into 3 triangles and then finding area of each triangle separately. I want to know if there is any simpler way of doing this.
 
Last edited:
Mathematics news on Phys.org
Hello DigitalComputer! Such problems are solved using the shoelace formula. If $A_r (x_r , y_r); \ r = 1,2,3, \cdots , n$ be the vertices of a polygon, taken in order then the area of the polygon $A_1 A_2 A_3 \cdots A_n$ is given by

\[\text{area}= \Bigg|\frac{1}{2}\left( \sum_{r=1}^{n-1} \begin{vmatrix}x_i & y_i \\ x_{i+1} & y_{i+1}\end{vmatrix}+\begin{vmatrix}x_n & y_n \\ x_{1} & y_{1}\end{vmatrix}\right) \Bigg|\]
 
Last edited:
DigitalComputer said:
Find the area of the polygon formed by the points (3,5), (5,11), (14,7), (8,3), and (6,6).

I can find the area of the polygon by dividing it into 3 triangles and then finding area of each triangle separately. I want to know if there is any simpler way of doing this.


Hi DigitalComputer, :)

To elaborate more on the Shoelace method, suppose you have a set of points, \((x_i,\,y_i)\mbox{ where }i=1,\,2,\,\cdots,\,n\), which are vertices of a polygon. Then the Shoelace formula is,

\[A={1 \over 2}|x_1y_2 + x_2y_3 + \cdots + x_{n-1}y_n + x_ny_1 - x_2y_1 - x_3y_2 - \cdots - x_ny_{n-1} - x_1y_n|\]

where \(A\) is the area of the polygon.

Note that in the Shoelace formula, the positive terms are obtained by the following manner;

The first \(x\) coordinate is multiplied by the second \(y\) coordinate, the second \(x\) coordinate is multiplied by the third \(y\) coordinate and so on. Finally the nth, \(x\) coordinate is multiplied by the first \(y\) coordinate.

And the negative terms are obtained by,

The second \(x\) coordinate is multiplied by the first \(y\) coordinate, the third \(x\) coordinate is multiplied by the second \(y\) coordinate and so on. Finally the first \(x\) coordinate is multiplied by the nth, \(y\) coordinate.

In your case, you have the points, \((3,5),\,(5,11),\, (14,7),\, (8,3)\mbox{ and }(6,6)\). Therefore by the Shoelace formula,

\[A=\frac{1}{2}|(3\times 11)+(5\times 7)+(14\times 3)+(8\times 6)+(6\times 5)-(5\times 5)-(14\times 11)-(8\times 7)-(6\times 3)-(3\times 6)|=41.5\]

Kind Regards,
Sudharaka.
 
Hello, DigitalComputer!

Find the area of the polygon formed by the points;
. . A (3,5), B(5,11), C(14,7), D(8,3), and E(6,6).

I use trapezoids . . .

Code:
      |
      |           B
      |           o
      |          *: *
      |         * :   *
      |        *  :     *
      |       *   :   E   *
      |      *    :   o     *
      |     *     *   :*      *
      |    *  *   :   : *       o C
      | A o       :   :  *   *  :
      |   :       :   :   o     :
      |   :       :   :   D     :
      |   :       :   :   :     :
  - - + - + - - - + - + - + - - + - - -
      |   F       G   H   I     J
First, I find the total area under the tent-shaped figure:
. . trapezoids ABGF + BCJG.

Then I subtract the areas of the three lower trapezoids:
. ..AEHF + EDIH + DCJI
 
Thank You!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K