MHB Find Area of Rotated Curve: $x=cos^3(\theta)$, $y=sin^3(\theta)$

  • Thread starter Thread starter ineedhelpnow
  • Start date Start date
  • Tags Tags
    Area Curve
ineedhelpnow
Messages
649
Reaction score
0
find the exact area of the surface obtained by rotating the given curve about the x-axis. $x=cos^3(\theta)$, $y=sin^3(\theta)$, $0 \le \theta \le \pi/2$.

$\frac{dx}{d \theta}=-3sin(\theta)cos^2(\theta)$

$\frac{dy}{d \theta}= 3sin^2 (\theta)cos( \theta)$

$S=2 \pi \int_{0}^{\pi/2} \ sin^3(\theta) \sqrt{(-3sin(\theta)cos^2(\theta))^2+(3sin^2(\theta)cos(\theta))^2}d \theta$

$=2 \pi \int_{0}^{\pi/2} \ sin^3(\theta) \sqrt{9sin^2 (\theta) cos^4(\theta)+9sin^4 (\theta)cos^2(\theta)}d \theta$

u-sub?
 
Physics news on Phys.org
Try factoring the radicand first...:D
 
(Headbang) i always miss the simplest things. thanks.

- - - Updated - - -

ok so I am left with $9sin^4(\theta)cos(\theta)$. set $u=sin(\theta)$?
 
Actually you're left with:

$$S=6\pi\int_0^{\frac{\pi}{2}}\sin^4(\theta)\cos(\theta)\,d\theta$$

Now you can make that substitution, or just integrate directly. :D
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top