Find Critical Points of Hessian Matrix

Click For Summary

Homework Help Overview

The discussion revolves around finding critical points of the function f(x,y,z)=x^3+y^2+z^2+12xy+2z and determining their types, specifically whether they are degenerate or non-degenerate, as well as calculating the Morse index for non-degenerate points.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants present attempts to find critical points by setting the partial derivatives to zero. They discuss the calculation of the Hessian matrix and its determinant for the identified critical points. Questions arise regarding the classification of these points as minimum, maximum, or saddle points, as well as the implications of the eigenvalues derived from the Hessian.

Discussion Status

Multiple participants are engaged in verifying calculations related to the critical points and the Hessian matrix. There is an ongoing exploration of the implications of the eigenvalues on the nature of the critical points, with some guidance provided on interpreting the signs of the eigenvalues.

Contextual Notes

Participants are working under the constraints of homework rules, focusing on the theoretical aspects of critical point classification without providing definitive conclusions about the nature of the points discussed.

azatkgz
Messages
182
Reaction score
0
Please,check my solution.
Find critical points of the function f(x,y,z)=x^3+y^2+z^2+12xy+2z
and determine their types (degenerate or non-degenerate, Morse index for non-
degenerate).

Attempt

\frac{df}{dx}=3x^2+12y=0

\frac{df}{dy}=2y+12x=0

\frac{df}{dz}=2z+2=0

Critical points are at

x=24 y=-144 z=-1

x=0 y=0 z=-1

H(f)=\left|\begin{array}{l[cr]}6x&12&0\\12&2&0\\0&0&2\end{array}\right|


for x=24

det\left|\begin{array}{l[cr]}144&12&0\\12&2&0\\0&0&2\end{array}\right|=288 non-degenerate


for x=0


det\left|\begin{array}{l[cr]}0&12&0\\12&2&0\\0&0&2\end{array}\right|=-288 non-degenerate
 
Physics news on Phys.org
azatkgz said:
Please,check my solution.
Find critical points of the function f(x,y,z)=x^3+y^2+z^2+12xy+2z
and determine their types (degenerate or non-degenerate, Morse index for non-
degenerate).

Attempt

\frac{df}{dx}=3x^2+12y=0

\frac{df}{dy}=2y+12x=0

\frac{df}{dz}=2z+2=0

Critical points are at

x=24 y=-144 z=-1

x=0 y=0 z=-1

H(f)=\left|\begin{array}{l[cr]}6x&12&0\\12&2&0\\0&0&2\end{array}\right|


for x=24

det\left|\begin{array}{l[cr]}144&12&0\\12&2&0\\0&0&2\end{array}\right|=288 non-degenerate


for x=0


det\left|\begin{array}{l[cr]}0&12&0\\12&2&0\\0&0&2\end{array}\right|=-288 non-degenerate

keep going... are they minimum, maximum.. saddle points??
 
Morse index

for (0,0,-1)

det\left|\begin{array}{l[cr]}-\lambda &12&0\\12&2-\lambda &0\\0&0&2-\lambda\end{array}}\right|=0

(2-\lambda )(-\lambda(2-\lambda)-144)=0

\lambda_1=2,\lambda_2=1-\sqrt{145},\lambda_3=1+\sqrt{145}


for (24,-144,-1)



det\left|\begin{array}{l[cr]}144-\lambda &12&0\\12&2-\lambda &0\\0&0&2-\lambda\end{array}}\right|=0

(2-\lambda )((144-\lambda)(2-\lambda)-144)=0

\lambda_1=2,\lambda_2=73-\sqrt{5185},\lambda_3=73+\sqrt{5185}

Is it right?What we can say about maximum,minimum and saddle points?
 
azatkgz said:
Morse index

for (0,0,-1)

det\left|\begin{array}{l[cr]}-\lambda &12&0\\12&2-\lambda &0\\0&0&2-\lambda\end{array}}\right|=0

(2-\lambda )(-\lambda(2-\lambda)-144)=0

\lambda_1=2,\lambda_2=1-\sqrt{145},\lambda_3=1+\sqrt{145}


for (24,-144,-1)



det\left|\begin{array}{l[cr]}144-\lambda &12&0\\12&2-\lambda &0\\0&0&2-\lambda\end{array}}\right|=0

(2-\lambda )((144-\lambda)(2-\lambda)-144)=0

\lambda_1=2,\lambda_2=73-\sqrt{5185},\lambda_3=73+\sqrt{5185}

Is it right?What we can say about maximum,minimum and saddle points?

i didnt check you're calculus, but find what the sign of eigenvalues mean and you'll get you're answer.

bye
 

Similar threads

Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 24 ·
Replies
24
Views
5K