Find Derivative of y=2^x Using Definition

Click For Summary
SUMMARY

The derivative of the function y=2^x can be derived using the definition of the derivative, which states that the derivative is the limit of (f(x+h) - f(x))/h as h approaches 0. The discussion emphasizes that for f(x) = a^x, the limit lim{(a^h - 1)/h} exists and equals ln(a), specifically ln(2) when a=2. The complexity arises in proving the existence of this limit, which many prefer to approach through the integral definition of ln(x) instead.

PREREQUISITES
  • Understanding of the definition of a derivative
  • Familiarity with limits and continuity
  • Knowledge of exponential functions and logarithms
  • Basic calculus concepts, particularly the properties of ln(x)
NEXT STEPS
  • Study the properties of exponential functions and their derivatives
  • Learn about the integral definition of natural logarithm ln(x)
  • Explore the concept of limits in calculus, focusing on proving limit existence
  • Investigate the relationship between exponential and logarithmic functions
USEFUL FOR

Students and educators in calculus, mathematicians interested in derivatives, and anyone seeking to deepen their understanding of exponential functions and their derivatives.

hackensack
Messages
2
Reaction score
0
I need to find the derivative of y=2^x using the definition of derivative.
 
Physics news on Phys.org
What have you done so far? What does the definition of derivative say?
 
This was also posted in the calculus section and there are about 10 replies there.
 
I doubt this is a suitable problem for a novice. even showing convergence is tough. i will look at the other posted answers. there is a good reason people start from the integral definition of ln(x) to derive this result.
 
If f(x)= ax, the f(x+h)= aa+x= axah so
f(a+ h)- f(a)= ax(ah- 1).

The derivative is lim (f(x+h)- f(x))/h= axlim {(ah-1)/h}. Notice that that is ax time a limit that is independent of x. That is, as long as the derivative exists, it is ax times a constant. The problem is showing that the lim{(ah-1)/h} EXISTS! And then showing that, if a= 2, that limit is ln(2).

Showing that that limit exists is sufficiently non-trivial that many people (myself included), as mathwonk said, prefer to define ln(x) as the integral, from 1 to x of (1/t)dt. From that, it is possible to prove all properties of ln(x) including (trivially) that the derivative is 1/x. Defining ex as the inverse function of ln(x) leads to all the properties of ex (including the fact that it is some number to a power!), in particular that its derivative is ex itself and, from that, that the derivative of ax is (ln a) ax.
 
dunno if I'm missing the point here but...

write
y=2^x
as
y=exp(x.ln2)
=>
y'=ln2.exp(x.ln2)
 
No, you did exactly what HallsofIvy was advocating, he was just pointing out that the question asked for it to be solved using the definition of a derivative, which makes things much harder. Easier to approach things from the other way, starting by defining the integral of 1/x.
 
"The derivative is lim (f(x+h)- f(x))/h= axlim {(ah-1)/h}. Notice that that is ax time a limit that is independent of x. That is, as long as the derivative exists, it is ax times a constant. The problem is showing that the lim{(ah-1)/h} EXISTS! And then showing that, if a= 2, that limit is ln(2)."

tell me if I'm wrong, but it doesn't seems so hard to determine this limit..
(a^h-1)/h = (exp (h*ln(a) )-1) / h
= ( 1 + h*ln(a) + o(h*ln(a)) - 1 ) / h h->0
= ln(a) + o(ln(a))
so lim (a^h-1)/h = ln(a) ...
 
brout said:
"The derivative is lim (f(x+h)- f(x))/h= axlim {(ah-1)/h}. Notice that that is ax time a limit that is independent of x. That is, as long as the derivative exists, it is ax times a constant. The problem is showing that the lim{(ah-1)/h} EXISTS! And then showing that, if a= 2, that limit is ln(2)."

tell me if I'm wrong, but it doesn't seems so hard to determine this limit..
(a^h-1)/h = (exp (h*ln(a) )-1) / h
= ( 1 + h*ln(a) + o(h*ln(a)) - 1 ) / h h->0
= ln(a) + o(ln(a))
so lim (a^h-1)/h = ln(a) ...

Yes, assuming that you know "(exp (h*ln(a) )-1) / h= ( 1 + h*ln(a) + o(h*ln(a)) - 1 ) / h " its easy to do it. Proving what you assumed is the hard part!
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K