MHB Find Exactly One Triple from $n$ Objects: $\mod{6}$

  • Thread starter Thread starter maxkor
  • Start date Start date
maxkor
Messages
79
Reaction score
0
Let $n \equiv 3 (\mod{6})$ objects $a_1, a_2, \dots, a_n$, show one can find $\frac{\binom{n}{2}}{3}$ triples $(a_i,a_j,a_k)$ such that every pair $(a_i,a_j) (i \ne j)$ appears in exactly one triple.
 
Mathematics news on Phys.org
maxkor said:
Let $n \equiv 3 (\mod{6})$ objects $a_1, a_2, \dots, a_n$, show one can find $\frac{\binom{n}{2}}{3}$ triples $(a_i,a_j,a_k)$ such that every pair $(a_i,a_j) (i \ne j)$ appears in exactly one triple.

A week has now gone by...perhaps you would like to share with us your solution to this problem. :D
 
MarkFL said:
A week has now gone by...perhaps you would like to share with us your solution to this problem. :D

I do not have a solution
 
maxkor said:
I do not have a solution

Hi maxkor, welcome to MHB and you're certainly welcome to post challenging problem(s) at our Challenge Questions and Puzzles sub forum because our members love all those fun for solving interesting and challenging math problems!:)

But, as the moderator of this sub forum, I need to remind you one of the guidelines that the posters of the challenge problems should adhere to and follow:

This forum is for the posting of problems and puzzles which our members find challenging, instructional or interesting and who wish to share them with others. As such, the OP should already have the correct solution ready to post in the event that no correct solution is given within at least 1 week's time.

Since you are new to this sub forum, I know perhaps you are not aware of such a guideline might exist and as such, please bear in mind that when you wanted to post for any challenge problem(s) here, please also be certain that you have already the solution in full at hand.

As a frequent challenge problems poster, I always solved any hard problem first before I made them a challenge here, and if I don't solve it by myself but have solution of other at hand and that the problem is interesting and challenging, I would post them here too. On the other hand, if I saw a great and hard problem of which I couldn't solve but eagerly wanted to know how to tackle it, then I would post it to ask for help from our members, rather than posing them as a challenge problem. This is my experience that I want to share it with you.:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top