MHB Find Extension of Springs: $\vec{r}$, $T$, and $x_E$

  • Thread starter Thread starter Carla1985
  • Start date Start date
  • Tags Tags
    Extension Springs
Carla1985
Messages
91
Reaction score
0
Second question I am stuck on:

A spring of natural length l with modulus of elasticity λ has one end fixed to the ceiling. A particle of mass m is attached to the other end of the spring and is left to hang in its equilibrium position under the influence of gravity.

(i) Find the extension $x_E$ of the spring in the equilibrium position.

(ii) The particle is now lowered a distance $a$ below its equilibrium position and released from rest. Working from N2, show that if $z$ denotes the vertical displacement of the particle below its equilibrium position and we neglect theeffects of air resistance, then

$\ddot{z}+ω^2z = 0$,

where $ω^2 = λ/(lm)$. Deduce that $z(t) = a cos(ωt)$.

(iii) Suppose now that the particle is initially at the equilibrium position and is given a positive downward initial velocity $\dot{z}(0) = b$. Show that in this case,

$z(t) = \frac{b}{ω} sin ωt$,

and hence find the first time when the particle comes to rest."

I'm really stuck on this one. I know the position vector of the particle is $\vec{r}=(l+x)\vec{k}$

and I think $T=\frac{\lambda x_E}{l}$ so $x_E=\frac{Tlm}{\lambda}$ but not sure if that's way off.

Thanks
 
Mathematics news on Phys.org
Carla1985 said:
Second question I am stuck on:

A spring of natural length l with modulus of elasticity λ has one end fixed to the ceiling. A particle of mass m is attached to the other end of the spring and is left to hang in its equilibrium position under the influence of gravity.

(i) Find the extension $x_E$ of the spring in the equilibrium position.

(ii) The particle is now lowered a distance $a$ below its equilibrium position and released from rest. Working from N2, show that if $z$ denotes the vertical displacement of the particle below its equilibrium position and we neglect theeffects of air resistance, then

$\ddot{z}+ω^2z = 0$,

where $ω^2 = λ/(lm)$. Deduce that $z(t) = a cos(ωt)$.

(iii) Suppose now that the particle is initially at the equilibrium position and is given a positive downward initial velocity $\dot{z}(0) = b$. Show that in this case,

$z(t) = \frac{b}{ω} sin ωt$,

and hence find the first time when the particle comes to rest."

I'm really stuck on this one. I know the position vector of the particle is $\vec{r}=(l+x)\vec{k}$

and I think $T=\frac{\lambda x_E}{l}$ so $x_E=\frac{Tlm}{\lambda}$ but not sure if that's way off.

Thanks

Hi again Carla! ;)

The modulus of elasticity λ is a property of a material.
To use it, you need the area of a cross section of the material.
So you need to use that
$$\qquad \displaystyle \lambda = \frac{\text{stress}}{\text{strain}} = \frac{F/A}{x_E/l}$$
where F is the force of gravity and A is the area of a cross section.Note that this can be rewritten as
$$\qquad F=\frac{\lambda A}{l} x_E = k x_E$$
which is the usual form of Hooke's law, meaning that the extension of a spring is linear with the applied force.Btw, in the equilibrium position, you would have that $T$ is equal to $mg$.
 
So the extension of the spring is $x_E=F\frac{l}{\lambda A}$? I'm a little confused by the A if I'm honest. In class we've just used λx/l and have never mentioned using the area of anything :/
 
Carla1985 said:
So the extension of the spring is $x_E=F\frac{l}{\lambda A}$? I'm a little confused by the A if I'm honest. In class we've just used λx/l and have never mentioned using the area of anything :/

Yes.

It appears you are using a different modulus of elasticity in class.
My reference is the version on wiki: Elastic modulus or Young's modulus.

But if you're using F=λx/l in class, you'd get $x_E=F\frac{l}{\lambda}$.

Then it seems as if you've only made a mistake substituting $T=mg$.
 
Yes, and the rest of the question makes a lot more sense now :) Thank you ever so much for your help. It is very much appreciated x
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top