- 5

- 1

**1. Homework Statement**

So! The problem states that a grasshopper jumps from the edge of a table. We know that x-initial is zero and x-final is 1.06m. This is how far he jumped from the origin. The height of the table is unknown, but we know that the height of the grasshoppers jump with respect to the table was .0674m...the initial angle is 50 degrees from the horizontal. In this problem, I'm trying to find the max height of the grasshoppers jump and the initial velocity of the grasshoppers jump.

So! The problem states that a grasshopper jumps from the edge of a table. We know that x-initial is zero and x-final is 1.06m. This is how far he jumped from the origin. The height of the table is unknown, but we know that the height of the grasshoppers jump with respect to the table was .0674m...the initial angle is 50 degrees from the horizontal. In this problem, I'm trying to find the max height of the grasshoppers jump and the initial velocity of the grasshoppers jump.

**2. Homework Equations**

I've got two relevant equations in my toolbox:

1) Height=)Vo^2(sine of initial theta)^2)/2g

2) Range=s=Vo^2/sin2(theta)*g

I've got two relevant equations in my toolbox:

1) Height=)Vo^2(sine of initial theta)^2)/2g

2) Range=s=Vo^2/sin2(theta)*g

**3. The Attempt at a Solution**

I took the range and tried to solve for Vo:

Vo=sqaure root of (1.06m)(9.8m/s^2)(2sin50cos50)=3.2m/s

This was not the correct answer.

I was unable to solve for height given that we currently know only partial height of the grasshoppers trajectory.

I took the range and tried to solve for Vo:

Vo=sqaure root of (1.06m)(9.8m/s^2)(2sin50cos50)=3.2m/s

This was not the correct answer.

I was unable to solve for height given that we currently know only partial height of the grasshoppers trajectory.

Any help would be greatly appreciated, or advice on how to perceive problems such as these more efficiently. Thanks!