MHB Find Intersection of Complex Number Loci Given w

AI Thread Summary
The discussion focuses on finding the intersection of two loci defined by the conditions \( |z-w|=|z-iw| \) and \( arg(z-w)=arg(iw) \) for a fixed complex number \( w \) in the first quadrant. Participants suggest that the intersection can be found geometrically by identifying the perpendicular bisector of the segment connecting points \( w \) and \( iw \), which represents points equidistant from both. Alternatively, an algebraic approach involves substituting \( w = a + ib \) and \( z = x + iy \) into the locus equations to derive Cartesian forms and solve them simultaneously. The original poster emphasizes that their challenge lies specifically in determining the intersection point rather than drawing the loci. Ultimately, both geometric and algebraic methods can yield the desired intersection in terms of \( w \).
Punch
Messages
44
Reaction score
0
w is a fixed complex number and \( 0<arg(w)<\frac{\pi}{2} \). Mark A and B, the points representing w and iw, on the Argand dagram. P represents the variable complex number z. Sketch on the same diagram, the locus of P in each of the following cases: (i) \( |z-w|=|z-iw| \) (ii) \(arg(z-w)=arg(iw)\)

Find in terms of w, the complex number representing the intersection of the two loci.

I have drawn the 2 locus already. But I do not know how to find the complex number representing the intersection of the 2 loci.
Do I form the equation of the 2 loci and then find the intersection by substituting one into the other?
 
Last edited:
Mathematics news on Phys.org
Use \ ( and \ ) without spaces to make your LaTeX work. As for the problem, remember that when you multiply complex numbers you rotate and expand/contract them, i.e., if \( z_1 = r_1 e^{ix_1} \text{ and } z_2 = r_2e^{i x_2} \text{ then } z_1z_2 = r_1r_2e^{i(x_1+x_2)} \). When you have \( |z-w| \) what you are measuring is the distance between \( z \text{ and } w \). Imposing that \( |z-w| = |z-iw| \) you want the locus of the points that are equally distant from \( w \text{ and } iw \).

Try working the second the same way. Remember the argument is the angle the complex number makes with the real axis.
 
Fantini said:
Use \ ( and \ ) without spaces to make your LaTeX work. As for the problem, remember that when you multiply complex numbers you rotate and expand/contract them, i.e., if \( z_1 = r_1 e^{ix_1} \text{ and } z_2 = r_2e^{i x_2} \text{ then } z_1z_2 = r_1r_2e^{i(x_1+x_2)} \). When you have \( |z-w| \) what you are measuring is the distance between \( z \text{ and } w \). Imposing that \( |z-w| = |z-iw| \) you want the locus of the points that are equally distant from \( w \text{ and } iw \).

Try working the second the same way. Remember the argument is the angle the complex number makes with the real axis.

Yup, I think you haven't read the next part I wrote. I completed drawing the locus and am facing difficulties solving the part which asks for a complex number representing the intersection of these 2 loci. "I have drawn the 2 locus already. But I do not know how to find the complex number representing the intersection of the 2 loci.
Do I form the equation of the 2 loci and then find the intersection by substituting one into the other?"
 
Geometrically, it will be the perpendicular passing through the midpoint connecting those two. Every point of it is equally distant to both. Algebraically, when you solve \( |z-w| = |z-iw| \) you should get two points, get the line passing through them and that's you answer. Since he asks for a sketch only, the geometric description should be easier to follow.
 
Fantini said:
Geometrically, it will be the perpendicular passing through the midpoint connecting those two. Every point of it is equally distant to both. Algebraically, when you solve \( |z-w| = |z-iw| \) you should get two points, get the line passing through them and that's you answer. Since he asks for a sketch only, the geometric description should be easier to follow.
The OP has said a few times now that s/he is NOT having trouble getting each locus, the trouble is getting the intersection of the two loci.

@OP: I have not looked closely, but you might be able to construct the intersection point geometrically in terms of w by using the isosceles triangles and symmetry that is present. Alternatively, an algebraic solution could be hammered out by substituting w = a + ib and z = x + iy into each locus to get the Cartesian equation and then solve using simultaneous equations and then link the answer back to w.
 
I'm sorry for not understanding the question properly, when I gave it further analysis I realized I was of no help.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top