Find Intersection of Complex Number Loci Given w

Click For Summary

Discussion Overview

The discussion revolves around finding the intersection of two loci defined by a fixed complex number \( w \) and its transformations. Participants explore the geometric and algebraic methods to determine the intersection point of these loci, which are defined by the conditions \( |z-w|=|z-iw| \) and \( arg(z-w)=arg(iw) \). The scope includes both geometric interpretations and algebraic formulations related to complex numbers.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant notes that the locus defined by \( |z-w|=|z-iw| \) represents points equidistant from \( w \) and \( iw \).
  • Another participant suggests that the intersection can be found by solving the equations of the loci and substituting one into the other.
  • Some participants propose a geometric approach, indicating that the intersection lies on the perpendicular bisector of the segment connecting \( w \) and \( iw \).
  • There is a suggestion to construct the intersection point geometrically using isosceles triangles and symmetry, or to derive it algebraically by substituting \( w = a + ib \) and \( z = x + iy \) into the locus equations.
  • One participant expresses confusion about the original question and acknowledges their lack of helpfulness.

Areas of Agreement / Disagreement

Participants generally agree on the methods to approach the problem, including both geometric and algebraic perspectives. However, there is no consensus on the exact method to find the intersection point, and some participants express uncertainty regarding the original question.

Contextual Notes

Participants have not fully resolved the mathematical steps required to find the intersection, and there are dependencies on the definitions of the loci and the complex numbers involved.

Punch
Messages
44
Reaction score
0
w is a fixed complex number and \( 0<arg(w)<\frac{\pi}{2} \). Mark A and B, the points representing w and iw, on the Argand dagram. P represents the variable complex number z. Sketch on the same diagram, the locus of P in each of the following cases: (i) \( |z-w|=|z-iw| \) (ii) \(arg(z-w)=arg(iw)\)

Find in terms of w, the complex number representing the intersection of the two loci.

I have drawn the 2 locus already. But I do not know how to find the complex number representing the intersection of the 2 loci.
Do I form the equation of the 2 loci and then find the intersection by substituting one into the other?
 
Last edited:
Physics news on Phys.org
Use \ ( and \ ) without spaces to make your LaTeX work. As for the problem, remember that when you multiply complex numbers you rotate and expand/contract them, i.e., if \( z_1 = r_1 e^{ix_1} \text{ and } z_2 = r_2e^{i x_2} \text{ then } z_1z_2 = r_1r_2e^{i(x_1+x_2)} \). When you have \( |z-w| \) what you are measuring is the distance between \( z \text{ and } w \). Imposing that \( |z-w| = |z-iw| \) you want the locus of the points that are equally distant from \( w \text{ and } iw \).

Try working the second the same way. Remember the argument is the angle the complex number makes with the real axis.
 
Fantini said:
Use \ ( and \ ) without spaces to make your LaTeX work. As for the problem, remember that when you multiply complex numbers you rotate and expand/contract them, i.e., if \( z_1 = r_1 e^{ix_1} \text{ and } z_2 = r_2e^{i x_2} \text{ then } z_1z_2 = r_1r_2e^{i(x_1+x_2)} \). When you have \( |z-w| \) what you are measuring is the distance between \( z \text{ and } w \). Imposing that \( |z-w| = |z-iw| \) you want the locus of the points that are equally distant from \( w \text{ and } iw \).

Try working the second the same way. Remember the argument is the angle the complex number makes with the real axis.

Yup, I think you haven't read the next part I wrote. I completed drawing the locus and am facing difficulties solving the part which asks for a complex number representing the intersection of these 2 loci. "I have drawn the 2 locus already. But I do not know how to find the complex number representing the intersection of the 2 loci.
Do I form the equation of the 2 loci and then find the intersection by substituting one into the other?"
 
Geometrically, it will be the perpendicular passing through the midpoint connecting those two. Every point of it is equally distant to both. Algebraically, when you solve \( |z-w| = |z-iw| \) you should get two points, get the line passing through them and that's you answer. Since he asks for a sketch only, the geometric description should be easier to follow.
 
Fantini said:
Geometrically, it will be the perpendicular passing through the midpoint connecting those two. Every point of it is equally distant to both. Algebraically, when you solve \( |z-w| = |z-iw| \) you should get two points, get the line passing through them and that's you answer. Since he asks for a sketch only, the geometric description should be easier to follow.
The OP has said a few times now that s/he is NOT having trouble getting each locus, the trouble is getting the intersection of the two loci.

@OP: I have not looked closely, but you might be able to construct the intersection point geometrically in terms of w by using the isosceles triangles and symmetry that is present. Alternatively, an algebraic solution could be hammered out by substituting w = a + ib and z = x + iy into each locus to get the Cartesian equation and then solve using simultaneous equations and then link the answer back to w.
 
I'm sorry for not understanding the question properly, when I gave it further analysis I realized I was of no help.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K