MHB Find Intersection of Complex Number Loci Given w

Punch
Messages
44
Reaction score
0
w is a fixed complex number and \( 0<arg(w)<\frac{\pi}{2} \). Mark A and B, the points representing w and iw, on the Argand dagram. P represents the variable complex number z. Sketch on the same diagram, the locus of P in each of the following cases: (i) \( |z-w|=|z-iw| \) (ii) \(arg(z-w)=arg(iw)\)

Find in terms of w, the complex number representing the intersection of the two loci.

I have drawn the 2 locus already. But I do not know how to find the complex number representing the intersection of the 2 loci.
Do I form the equation of the 2 loci and then find the intersection by substituting one into the other?
 
Last edited:
Mathematics news on Phys.org
Use \ ( and \ ) without spaces to make your LaTeX work. As for the problem, remember that when you multiply complex numbers you rotate and expand/contract them, i.e., if \( z_1 = r_1 e^{ix_1} \text{ and } z_2 = r_2e^{i x_2} \text{ then } z_1z_2 = r_1r_2e^{i(x_1+x_2)} \). When you have \( |z-w| \) what you are measuring is the distance between \( z \text{ and } w \). Imposing that \( |z-w| = |z-iw| \) you want the locus of the points that are equally distant from \( w \text{ and } iw \).

Try working the second the same way. Remember the argument is the angle the complex number makes with the real axis.
 
Fantini said:
Use \ ( and \ ) without spaces to make your LaTeX work. As for the problem, remember that when you multiply complex numbers you rotate and expand/contract them, i.e., if \( z_1 = r_1 e^{ix_1} \text{ and } z_2 = r_2e^{i x_2} \text{ then } z_1z_2 = r_1r_2e^{i(x_1+x_2)} \). When you have \( |z-w| \) what you are measuring is the distance between \( z \text{ and } w \). Imposing that \( |z-w| = |z-iw| \) you want the locus of the points that are equally distant from \( w \text{ and } iw \).

Try working the second the same way. Remember the argument is the angle the complex number makes with the real axis.

Yup, I think you haven't read the next part I wrote. I completed drawing the locus and am facing difficulties solving the part which asks for a complex number representing the intersection of these 2 loci. "I have drawn the 2 locus already. But I do not know how to find the complex number representing the intersection of the 2 loci.
Do I form the equation of the 2 loci and then find the intersection by substituting one into the other?"
 
Geometrically, it will be the perpendicular passing through the midpoint connecting those two. Every point of it is equally distant to both. Algebraically, when you solve \( |z-w| = |z-iw| \) you should get two points, get the line passing through them and that's you answer. Since he asks for a sketch only, the geometric description should be easier to follow.
 
Fantini said:
Geometrically, it will be the perpendicular passing through the midpoint connecting those two. Every point of it is equally distant to both. Algebraically, when you solve \( |z-w| = |z-iw| \) you should get two points, get the line passing through them and that's you answer. Since he asks for a sketch only, the geometric description should be easier to follow.
The OP has said a few times now that s/he is NOT having trouble getting each locus, the trouble is getting the intersection of the two loci.

@OP: I have not looked closely, but you might be able to construct the intersection point geometrically in terms of w by using the isosceles triangles and symmetry that is present. Alternatively, an algebraic solution could be hammered out by substituting w = a + ib and z = x + iy into each locus to get the Cartesian equation and then solve using simultaneous equations and then link the answer back to w.
 
I'm sorry for not understanding the question properly, when I gave it further analysis I realized I was of no help.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top