MHB Find Laurent Series for $\frac{1}{z^2(1 - z)}$ in $0 < |z| < 1$ & $|z| > 1$

Click For Summary
The Laurent series for the function \( \frac{1}{z^2(1 - z)} \) is derived for two regions: \( 0 < |z| < 1 \) and \( |z| > 1 \). In the region \( 0 < |z| < 1 \), the series converges to \( \sum_{n = -2}^{\infty} z^n \) using the geometric series expansion. For \( |z| > 1 \), the series converges to \( -\sum_{n = 3}^{\infty} \left(\frac{1}{z}\right)^n \) by transforming the function appropriately. Both series are valid representations for their respective regions. This analysis highlights the behavior of the function in different domains of \( z \).
Dustinsfl
Messages
2,217
Reaction score
5
Find the Laurent series for $1/z^2(1 - z)$ in the regions

$0 < |z| < 1$
$$
\frac{1}{z^2(1 - z)} = \frac{1}{z^2}\frac{1}{1-z}
$$
Since $|z| < 1$, the geometric series will converge so
$$
\frac{1}{z^2}\sum_{n = 0}^{\infty}z^n = \sum_{n = -2}^{\infty}z^n.
$$$|z| > 1$
The geometric series will converge when $\left|\dfrac{1}{z}\right| < 1$.
So
$$
\frac{1}{z^2}\frac{1}{1-z} = \frac{-1}{z^3}\frac{1}{1 - \frac{1}{z}} = \frac{-1}{z^3}\sum_{n = 0}^{\infty}\left(\frac{1}{z}\right)^n = -\sum_{n = 3}^{\infty}\left(\frac{1}{z}\right)^n.
$$
 
Physics news on Phys.org
Both are correct.
 

Similar threads

  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K