MHB Find Least Value Inequality for $$-1<x<0$$

  • Thread starter Thread starter Amad27
  • Start date Start date
  • Tags Tags
    Inequality Value
Click For Summary
The discussion centers on determining which expression has the least value for the range -1 < x < 0. Participants analyze various expressions: -x, 1/x, -1/x, 1/x^2, and 1/x^3. Through inequalities, it is concluded that 1/x^3 yields the least value as x approaches 0 from the negative side. An alternative method using a substitution approach supports this conclusion. The consensus is that the least value is indeed found in option (E) 1/x^3.
Amad27
Messages
409
Reaction score
1
Which of the following have the least value if

$$-1 < x < 0$$

$$(A) -x$$
$$(B) 1/x$$
$$(C) -1/x$$
$$(D) 1/x^2 $$
$$(E) 1/x^3$$

Mmmmmmmm...

I'm not sure what to do, but I'll definitely try. We can break it up into two inequalities.

$$ x > -1$$
$$0 > x$$

$$\implies -x < 1, 0 < -x$$
$$\implies -1 < 1/x, 0 < 1/x$$
$$\implies 1 > 1/x, 0 > -1/x$$
$$\implies 1/x^2 < 1$$
$$ \implies 1/x^3 < -1$$

So $(E)$ should be correct.

BottomLine: Is this the correct way to go about it?

Thanks!
 
Mathematics news on Phys.org
Olok said:
Which of the following have the least value if

$$-1 < x < 0$$

$$(A) -x$$
$$(B) 1/x$$
$$(C) -1/x$$
$$(D) 1/x^2 $$
$$(E) 1/x^3$$

Mmmmmmmm...

I'm not sure what to do, but I'll definitely try. We can break it up into two inequalities.

$$ x > -1$$
$$0 > x$$

$$\implies -x < 1, 0 < -x$$
$$\implies -1 < 1/x, 0 < 1/x$$
$$\implies 1 > 1/x, 0 > -1/x$$
$$\implies 1/x^2 < 1$$
$$ \implies 1/x^3 < -1$$

So $(E)$ should be correct.

BottomLine: Is this the correct way to go about it?

Thanks!

Hej + good morning,

Is this the correct way to go about it?
as usual in math there isn't the one and only way to do a question: If you get the correct result your way is probably correct too.

Here is how I would have done this question:
Let $$k \in \mathbb{R}\ \wedge \ k > 1~\implies~x = -\frac1k$$

If you look for the least value of a term all terms which produce a positive result are not valid. So that leaves the B and E. Now replace x by $$-\frac1k$$ and you'll see immediately that $$\underbrace{-k^3}_{\text{case E}} < \underbrace{-k}_{\text{case B}}$$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K