MHB Find length that minimizes the perimeter

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Length Perimeter
Click For Summary
In the problem involving an equilateral triangle $ABC$, points $D$, $E$, and $F$ are defined on the sides with specific lengths: $AD=2$, $AF=1$, and $FC=3$. To minimize the perimeter of triangle $DEF$, the relationship between the lengths must be analyzed, particularly focusing on the position of point $E$. The goal is to find the length $AE$ that achieves this minimum perimeter. The solution involves applying geometric principles and potentially calculus to derive the optimal length for $AE$. The final answer will provide the value of $AE$ that minimizes the perimeter of triangle $DEF$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $ABC$ be an equilateral triangle and let $D,\,E$ and $F$ be the points on the sides $AB,\,BC$ and $AC$ respectively such that $AD=2,\,AF=1$ and $FC=3$. If the triangle $DEF$ has minimum possible perimeter, find $AE$.
 
Mathematics news on Phys.org
[TIKZ]\coordinate [label=left:{$B$}] (B) at (0,0) ;
\coordinate [label=right:{$C$}] (C) at (4,0) ;
\coordinate [label=left:{$A$}] (A) at (60:4) ;
\coordinate [label=left:{$D$}] (D) at (60:2) ;
\coordinate [label=right:$F$] (F) at (2.5,2.6) ;
\coordinate [label=left:{$D'$}] (H) at (300:2) ;
\coordinate [label=left:{$A'$}] (K) at (300:4) ;
\coordinate [label=below right:$E$] (E) at (intersection of B--C and F--H) ;

\draw [very thick] (A) -- (B) -- (C) -- cycle ;
\draw (E) -- (D) -- (F) -- (H) ;
\draw (B) -- (K) -- (C) ;
\draw[dashed] (A) -- (E) ;\node at (0.2,0.9) {$2$} ;
\node at (1.2,2.6) {$2$} ;
\node at (2.45,3.2) {$1$} ;
\node at (3.4,1.6) {$3$} ;
\node at (0.2,-0.9) {$2$} ;[/TIKZ]
Let $A'BC$ be the reflection of $ABC$ in the line $BC$, with $D'$ the midpoint of $BA'$. The perimeter of $DEF$ is $DF + FE + ED = DF + FE + ED'$, and this is minimised when $FED'$ is a straight line (as in the diagram).

Now choose a coordinate system with $B$ as the origin and $C$ as the point $(4,0)$. Then $A = (4\cos60^\circ,4\sin60^\circ) = (2,2\sqrt3)$. Similarly, $F = \bigl(\frac52,\frac32\sqrt3)$ and $D' = (1,-\sqrt3)$. The line $FD'$ then has equation $y = \dfrac{5x-8}{\sqrt3}$. When $y=0$, $x=\frac85$. So $E = \bigl(\frac85,0\bigr)$.

Then $AE^2 = \bigl(2-\frac85\bigr)^2 + (2\sqrt3-0)^2 = \frac4{25} + 12 = \frac{304}{25}$, so $AE = \frac{\sqrt{304}}5 = \frac45\sqrt{19} \approx 3.487$.
 

Similar threads

Replies
2
Views
2K
Replies
2
Views
5K
Replies
13
Views
4K
Replies
4
Views
1K
Replies
4
Views
2K
Replies
5
Views
2K