Find Limit of Function: Does 0/0 Exist?

  • Thread starter Thread starter Ipos Manger
  • Start date Start date
  • Tags Tags
    Function Limit
Click For Summary
SUMMARY

The discussion focuses on evaluating the limit of the function lim x-> -2 (3x² + ax + a + 3)/(x² + x - 2) and determining the conditions under which it exists. The participants clarify that the limit results in the indeterminate form 0/0 when both the numerator and denominator equal zero at x = -2. It is established that for the limit to exist, the numerator must also be factored to find a common factor with the denominator. The value of 'a' that makes the numerator zero at x = -2 is determined to be 15.

PREREQUISITES
  • Understanding of limits in calculus
  • Knowledge of polynomial factorization
  • Familiarity with indeterminate forms, specifically 0/0
  • Awareness of L'Hopital's Rule for evaluating limits
NEXT STEPS
  • Study polynomial factorization techniques in detail
  • Learn about L'Hopital's Rule and its applications
  • Explore the concept of indeterminate forms in calculus
  • Practice solving limits that result in 0/0 using various methods
USEFUL FOR

Students studying calculus, particularly those focusing on limits and polynomial functions, as well as educators seeking to clarify the concept of indeterminate forms and limit evaluation techniques.

Ipos Manger
Messages
31
Reaction score
0

Homework Statement



Does lim x-> -2 (3x2+ax+a+3)/(x2+x-2) exist?

If so, find the limit.

Homework Equations



-

The Attempt at a Solution



I've tried factorizing the denominator to (x+2)(x-1), but then I don't know how to proceed on the exercise. I have seen that the limit exists when the numerator equals 0, but why is this (the denominator is also 0)? Does 0/0 exist at all?
Code:
 
Physics news on Phys.org
Ipos Manger said:

Homework Statement



Does lim x-> -2 (3x2+ax+a+3)/(x2+x-2) exist?

If so, find the limit.

Homework Equations



-

The Attempt at a Solution



I've tried factorizing the denominator to (x+2)(x-1), but then I don't know how to proceed on the exercise. I have seen that the limit exists when the numerator equals 0, but why is this (the denominator is also 0)? Does 0/0 exist at all?

What value of a would make the numerator zero when x = -2?

When both numerator and denominator are zero (i.e., the indeterminate form 0/0), it's usually because there is a factor in common between the top and bottom. Although not certain, there's a good chance that a limit exists.
 
  • Like
Likes   Reactions: 1 person
Mark44 said:
What value of a would make the numerator zero when x = -2?

When both numerator and denominator are zero (i.e., the indeterminate form 0/0), it's usually because there is a factor in common between the top and bottom. Although not certain, there's a good chance that a limit exists.
a = 15.

So that means I just have to learn that by heart? Isn't there sort of a formal proof to test that? On the other hand, how do you know there's a factor in common between the top and bottom knowing that numerator and denominator are zero?

Thank you for your answer.
 
I don't think you need to memorize what I said - just be aware that if a limit has the form "0/0" you're not done yet. "0/0" is not a value - it is an indeterminate form, which means that you can't determine a value. All of the limits below have this form, but they have wildly different limit values.

$$\lim_{x \to 0}\frac {x^2}{x} = 0$$
$$\lim_{x \to 0}\frac {x}{x} = 1$$
$$\lim_{x \to 0^+}\frac {x}{x^2} = \infty $$

Note that in the 3rd limit, the two-sided limit doesn't exist, and that's the reason I am using the one-sided limit, the limit as x approaches zero from the right.

As far as a theorem goes, the only one that comes to mind is L'Hopital's Rule, which is applicable in cases with the indeterminate forms 0/0 and ±∞/∞.
 
After you have factored the denominator, factor the numerator (or use Mark44's shortcut).
 
Ipos Manger said:
On the other hand, how do you know there's a factor in common between the top and bottom knowing that numerator and denominator are zero?
There's a theorem that says that if p(x) is a non-constant polynomial and p(a)=0, then p(x) can be factored into p(x)=(x-a)q(x), where q(x) is another polynomial. In this problem both the numerator and denominator are polynomials; therefore, if they both equal 0 at x=-2, they have (x-(-2)) as a common factor.
 
I'm sorry to hijack the thread, but does this mean that i have to learn as a general rule if the denominator is 0 (in the case of the limit), I have to solve the numerator for 0 and find the values that I can factorize? Thank you.
 
chatnay said:
I'm sorry to hijack the thread, but does this mean that i have to learn as a general rule if the denominator is 0 (in the case of the limit), I have to solve the numerator for 0 and find the values that I can factorize? Thank you.

I would say no, you don't have to do that. You must try to factorize the numerator IF it goes to 0.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K