MHB Find log_3 (a2+a3+a4+a5+a6+a7)

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The equation given is $\frac{5}{7} = \frac{a_2}{2!} + \frac{a_3}{3!} + \frac{a_4}{4!} + \frac{a_5}{5!} + \frac{a_6}{6!} + \frac{a_7}{7!}$, leading to the expression for $a_2 + a_3 + a_4 + a_5 + a_6 + a_7$. By multiplying through by $7!$, the values of $a_2, a_3, a_4, a_5, a_6, a_7$ are determined as $a_2 = 1, a_3 = 1, a_4 = 1, a_5 = 0, a_6 = 4, a_7 = 2$. This results in a total of 9, and thus $\log_3(9) = 2$. Adding the restriction $0 \leq a_i < i$ ensures a unique solution.
Albert1
Messages
1,221
Reaction score
0
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$
 
Mathematics news on Phys.org
Albert said:
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$

My Solution:

Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$
 
Last edited by a moderator:
jacks said:
[hide]My Solution:: Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$[/hide]

above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
 
kaliprasad said:
above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
yes you are right
if we add a restriction:$0\leq a_i<i$
then the solution will be unique
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K