Find log_3 (a2+a3+a4+a5+a6+a7)

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding the value of \( \log_3 (a_2 + a_3 + a_4 + a_5 + a_6 + a_7) \) given a specific equation involving factorials and integer variables \( a_2, a_3, a_4, a_5, a_6, a_7 \). The context includes mathematical reasoning and problem-solving related to the equation.

Discussion Character

  • Mathematical reasoning, Homework-related

Main Points Raised

  • One participant presents an equation involving factorials and proposes to find \( \log_3 (a_2 + a_3 + a_4 + a_5 + a_6 + a_7) \).
  • A solution is provided where the participant manipulates the equation by multiplying both sides by \( 7! \) and derives values for \( a_2, a_3, a_4, a_5, a_6, a_7 \) through a series of steps.
  • The solution concludes with \( a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = 9 \) leading to \( \log_3(9) = 2 \).
  • Another participant acknowledges the solution but suggests that adding a restriction \( 0 \leq a_i < i \) would make the solution unique.

Areas of Agreement / Disagreement

There is no consensus on the uniqueness of the solution without the proposed restriction. The discussion includes differing views on the conditions necessary for a unique solution.

Contextual Notes

The discussion highlights the dependence on the values of \( a_i \) and the implications of potential restrictions on these variables, which remain unresolved.

Albert1
Messages
1,221
Reaction score
0
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$
 
Mathematics news on Phys.org
Albert said:
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$

My Solution:

Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$
 
Last edited by a moderator:
jacks said:
[hide]My Solution:: Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$[/hide]

above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
 
kaliprasad said:
above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
yes you are right
if we add a restriction:$0\leq a_i<i$
then the solution will be unique
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K