MHB Find log_3 (a2+a3+a4+a5+a6+a7)

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The equation given is $\frac{5}{7} = \frac{a_2}{2!} + \frac{a_3}{3!} + \frac{a_4}{4!} + \frac{a_5}{5!} + \frac{a_6}{6!} + \frac{a_7}{7!}$, leading to the expression for $a_2 + a_3 + a_4 + a_5 + a_6 + a_7$. By multiplying through by $7!$, the values of $a_2, a_3, a_4, a_5, a_6, a_7$ are determined as $a_2 = 1, a_3 = 1, a_4 = 1, a_5 = 0, a_6 = 4, a_7 = 2$. This results in a total of 9, and thus $\log_3(9) = 2$. Adding the restriction $0 \leq a_i < i$ ensures a unique solution.
Albert1
Messages
1,221
Reaction score
0
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$
 
Mathematics news on Phys.org
Albert said:
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$

My Solution:

Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$
 
Last edited by a moderator:
jacks said:
[hide]My Solution:: Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$[/hide]

above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
 
kaliprasad said:
above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
yes you are right
if we add a restriction:$0\leq a_i<i$
then the solution will be unique
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K