Find log_3 (a2+a3+a4+a5+a6+a7)

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on solving the equation $\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$ to find $log_3 (a_2+a_3+a_4+a_5+a_6+a_7)$. The solution involves manipulating the equation to derive values for $a_2, a_3, a_4, a_5, a_6, a_7$, ultimately leading to $a_2 + a_3 + a_4 + a_5 + a_6 + a_7 = 9$ and thus $log_3(9) = 2$. A unique solution is confirmed under the restriction $0 \leq a_i < i$.

PREREQUISITES
  • Understanding of factorial notation and its application in equations
  • Knowledge of logarithmic functions, specifically $log_3$
  • Familiarity with integer solutions in algebraic equations
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of logarithms, particularly in relation to integer solutions
  • Explore combinatorial number theory to understand restrictions on integer variables
  • Learn about factorial growth and its implications in equations
  • Investigate unique solution conditions in algebraic systems
USEFUL FOR

Mathematicians, educators, and students interested in algebraic equations, logarithmic functions, and combinatorial number theory will benefit from this discussion.

Albert1
Messages
1,221
Reaction score
0
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$
 
Mathematics news on Phys.org
Albert said:
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$

My Solution:

Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$
 
Last edited by a moderator:
jacks said:
[hide]My Solution:: Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$[/hide]

above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
 
kaliprasad said:
above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
yes you are right
if we add a restriction:$0\leq a_i<i$
then the solution will be unique
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K