MHB Find log_3 (a2+a3+a4+a5+a6+a7)

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
The equation given is $\frac{5}{7} = \frac{a_2}{2!} + \frac{a_3}{3!} + \frac{a_4}{4!} + \frac{a_5}{5!} + \frac{a_6}{6!} + \frac{a_7}{7!}$, leading to the expression for $a_2 + a_3 + a_4 + a_5 + a_6 + a_7$. By multiplying through by $7!$, the values of $a_2, a_3, a_4, a_5, a_6, a_7$ are determined as $a_2 = 1, a_3 = 1, a_4 = 1, a_5 = 0, a_6 = 4, a_7 = 2$. This results in a total of 9, and thus $\log_3(9) = 2$. Adding the restriction $0 \leq a_i < i$ ensures a unique solution.
Albert1
Messages
1,221
Reaction score
0
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$
 
Mathematics news on Phys.org
Albert said:
$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4!}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac {a_7}{7!}$
here :$a_2,a_3,----,a_6,a_7\in Z$
pease find:$log_3 (a_2+a_3+a_4+a_5+a_6+a_7)=?$

My Solution:

Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$
 
Last edited by a moderator:
jacks said:
[hide]My Solution:: Multiply both side by $$7!\;,$$ we get

$$\displaystyle 3600 = 2520a_{2}+840a_{3}+210a_{4}+42a_{5}+7a_{6}+a_{7}$$

Now $$3600-a_{7}$$ is a multiply of $$7$$. So $$a_{1}=2$$

Thus $$\displaystyle \frac{3598}{7} = 514=360a_{2}+120a_{3}+30a_{4}+6a_{5}+a_{6}$$

So $$3598-a_{6}$$ is a multiple of $$6\;,$$ So $$a_{6} = 4$$

Thus $$\displaystyle \frac{510}{6}=85=60a_{2}+20a_{3}+5a_{4}+a_{5}$$

Thus $$85-a_{5}$$ is a multiple of $$5\;,$$ where $$a_{5}=0$$

Continuing in this process, we get $$a_{4}=1\;a_{3}=1\;,a_{2}=1$$

So we get $$a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}=1+1+1+0+4+2=9$$

So $$\log_{3}\left(a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}\right)=\log_{3}(9)=2$$[/hide]

above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
 
kaliprasad said:
above is a good solution but

$a_7=9$ and $a_6=3$ is also a solution so some attribute of problem is missing
yes you are right
if we add a restriction:$0\leq a_i<i$
then the solution will be unique
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
1
Views
1K
Replies
14
Views
5K
Replies
4
Views
3K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
7
Views
2K
Back
Top