MHB Find Lowest Value for A: a1, a2, a3 & 4 | Arithmetic Progression

Click For Summary
The discussion focuses on finding the lowest value of A = a1a2 + a2a3 + a3a1 for an arithmetic progression defined by a1, a2, a3, and 4. A participant expresses uncertainty about their approach, having derived A = 3x^2 + 6xd + 2d^2. Another user suggests that the fourth term of the progression can simplify A into a single variable, which would facilitate finding the minimum value. The original poster acknowledges the oversight and appreciates the guidance provided. The conversation emphasizes the importance of utilizing all given terms in mathematical problems for simplification.
mitaka90
Messages
9
Reaction score
0
a1, a2, a3 and 4 make an arithmetic progression with difference d. For which values of d, A = a1a2 + a2a3 + a3a1 has the lowest value?I don't know if I went with the right approach, but I managed to get this : A=3x2 +6xd + 2d2 for a1= x, a2 = x + d, etc... But I don't know what else to do.
 
Mathematics news on Phys.org
mitaka90 said:
a1, a2, a3 and 4 make an arithmetic progression with difference d. For which values of d, A = a1a2 + a2a3 + a3a1 has the lowest value?I don't know if I went with the right approach, but I managed to get this : A=3x2 +6xd + 2d2 for a1= x, a2 = x + d, etc... But I don't know what else to do.
Hi mitaka90!

It seems to me you haven't made good use of the given fourth term in that arithmetic progression...:) the fourth term would help you to simplify your $A$ in terms of only one variable and when you have the quadratic equation in terms of one variable, I believe you could handle from there...
 
anemone said:
Hi mitaka90!

It seems to me you haven't made good use of the given fourth term in that arithmetic progression...:) the fourth term would help you to simplify your $A$ in terms of only one variable and when you have the quadratic equation in terms of one variable, I believe you could handle from there...

Omg, I'm such a moron. I hate it when I do the hard work and then the easiest and most noticable thing just slips from my sight. Thank you sincerely, I guess that little tip is what I needed.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K