Undergrad Find matrix of linear transformation and show it's diagonalizable

Click For Summary
To find the matrix of a linear transformation F, one should start by identifying a basis for the finite-dimensional vector space V. It is essential to determine the eigenvectors of F, as they play a crucial role in diagonalizability. The condition for diagonalizability is that the arithmetic and geometric multiplicities of each eigenvalue must match. Establishing these relationships will facilitate the process of demonstrating that the matrix is diagonalizable. Understanding these concepts is fundamental to effectively working with linear transformations and their matrices.
schniefen
Messages
177
Reaction score
4
TL;DR
Let ##V## be an ##n##-dimensional inner product space, where ##n>0##, and let ##F## be the linear transformation on ##V## defined by ##F(\textbf{u})=\langle \textbf{u},\textbf{c} \rangle \textbf{b}-\langle \textbf{b},\textbf{c} \rangle \textbf{u} ##, where ##\textbf{b},\textbf{c} \in V## and ## \langle \textbf{b},\textbf{c} \rangle \neq 0 ##. Show that ##V## has a basis consisting of eigenvectors of ##F## and find the matrix of ##F## with respect to some such basis.
The strategy here would probably be to find the matrix of ##F##. How would one go about doing that? Since ##V## is finite dimensional, it must have a basis...
 
Physics news on Phys.org
I think it would be simpler to just figure out what an eigenvector of ##F(.)## looks like. Under what conditions does ##F(\mathbf u) = \lambda \mathbf u## for some ##\lambda## and ##\mathbf u##?
 
  • Like
Likes HallsofIvy and schniefen
This is possible when the arithmetic and geometric multiplicities of each eigenvalue agree.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
2K