What is the Maximum Area of an Inscribed Pentagon with Perpendicular Diagonals?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Area Maximum
Click For Summary
SUMMARY

The maximum area of a pentagon inscribed in a unit circle with perpendicular diagonals AC and BD is determined to be 2. This conclusion is reached by applying geometric principles and optimization techniques. The configuration of the pentagon must ensure that the angles and lengths are arranged to maximize the area while adhering to the constraints of the unit circle.

PREREQUISITES
  • Understanding of geometric properties of polygons
  • Familiarity with optimization techniques in geometry
  • Knowledge of trigonometric functions and their applications
  • Basic principles of inscribed figures in circles
NEXT STEPS
  • Study the properties of cyclic polygons and their areas
  • Explore optimization methods in geometric contexts
  • Learn about the relationship between angles and areas in inscribed figures
  • Investigate the use of trigonometric identities in polygon area calculations
USEFUL FOR

Mathematicians, geometry enthusiasts, students studying optimization in mathematics, and anyone interested in advanced geometric configurations.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the maximum area of a pentagon $ABCDE$ inscribed in a unit circle such that the diagonal $AC$ is perpendicular to the diagonal $BD$.
 
Mathematics news on Phys.org
[TIKZ]\draw circle (3) ;
\draw [help lines, ->] (-3.5,0) -- (3.5,0) ;
\draw [help lines, ->] (0,-3.5) -- (0,3.5) ;
\coordinate [label=below left:$O$] (O) at (0,0) ;
\coordinate [label=above:$A$] (A) at (110:3) ;
\coordinate [label=left:$B$] (B) at (210:3) ;
\coordinate [label=below:$C$] (C) at (250:3) ;
\coordinate [label=right:$D$] (D) at (330:3) ;
\coordinate [label=right:$E\ $] (E) at (40:3) ;
\draw [thick] (A) -- (B) -- (C) -- (D) -- (E) -- cycle ;
\draw (C) -- (A) -- (D) -- (B) ;
\draw [thin] (A) -- (0,0) -- (E) ;
\draw [thin] (0,0) -- (D) ;
\draw (0.6,0.25) node{$\delta$} ;
\draw (0.1,0.35) node{$\gamma$} ;
\draw (-1,3.5) node{$(\cos(\delta + \gamma), \sin(\delta + \gamma))$} ;
\draw (-4.5,-1.9) node{$(-\cos(\delta - \gamma), \sin(\delta - \gamma)$} ;
\draw (-1,-3.5) node{$(\cos(\delta + \gamma), -\sin(\delta + \gamma)$} ;
\draw (4.4,-1.9) node{$(\cos(\delta - \gamma), \sin(\delta - \gamma)$} ;
\draw (3.8,1.9) node{$(\cos\delta, \sin\delta)$} ;[/TIKZ]
Choose a coordinate system with the unit circle centred at the origin $O$, the $x$-axis parallel to $BD$ and the $y$-axis parallel to $AC$, as in the diagram. Split the pentagon into the quadrilateral $ABCD$ and the triangle $ADE$. If $ABCD$ is kept fixed then the area of $ADE$ is maximised when $E$ is midway between $A$ and $D$ on the arc $AD$. Suppose that $OE$ then makes an angle $\delta$ with the $x$-axis, and let $2\gamma$ be the angle $AOD$, so that the angles $AOE$ and $EOD$ are both $\gamma$. The coordinates of $A$, $B$, $C$, $D$ and $E$ are then as shown in the diagram.

The area of $ABCD$ is the sum of the areas of triangles $BAD$ and $CAD$, with base $BD$ and combined height $AC$. So (using a product-to-sum identity) $$\text{Area}(ABCD) = \tfrac12AC\cdot BD = 2\sin(\delta+\gamma)\cos(\delta-\gamma) = \sin(2\delta) + \sin(2\gamma).$$ The triangle $ADE$ has base $AD = 2\sin\gamma$ and height $1-\cos\gamma$, so its area is $\sin\gamma(1-\cos\gamma)$.

Thus the area of the pentagon is $\sin(2\delta) + \sin(2\gamma) + \sin\gamma(1-\cos\gamma) = \sin(2\delta) + \sin\gamma(1+\cos\gamma)$. As far as $\delta$ is concerned, this is maximised when $\sin(2\delta) = 1$, or $\delta = 45^\circ$. To maximise the $\gamma$-function, differentiate it, getting $\cos\gamma(1+\cos\gamma) - \sin^2\gamma = 0$. That gives $2\cos^2\gamma + \cos\gamma - 1 = 0$, so that $(2\cos\gamma - 1)(\cos\gamma + 1) = 0$. The maximum occurs when $\cos \gamma = \frac12$, or $\gamma = 60^\circ$.

The maximum area of the pentagon is therefore $1 + \frac{\sqrt3}2\bigl(1+ \frac12\bigr) = 1 + \frac{3\sqrt3}4$.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
21
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K