MHB Find Min Polynomial of $\alpha$ Over $\mathbb{Q} | Solution Included

kalish1
Messages
79
Reaction score
0
I started by setting $\alpha= e^{2\pi i/3} + \sqrt[3]{2}.$ Then I obtained $f(x) = x^9 - 9x^6 - 27x^3 - 27$ has $\alpha$ as a root.

How can I proceed to find the minimal polynomial of $\alpha$ over $\mathbb{Q},$ and identify its other roots?
 
Physics news on Phys.org
kalish said:
I started by setting $\alpha= e^{2\pi i/3} + \sqrt[3]{2}.$ Then I obtained $f(x) = x^9 - 9x^6 - 27x^3 - 27$ has $\alpha$ as a root.

How can I proceed to find the minimal polynomial of $\alpha$ over $\mathbb{Q},$ and identify its other roots?
The numbers $e^{2r\pi i/3} + \sqrt[3]{2}e^{2s\pi i/3}$, with $r,s \in\{0,1,2\}$, all satisfy that equation. So that gives you the nine roots of $f(x)$, of which $\alpha$ is one. I'm guessing that $f(x)$ is irreducible over $\mathbb{Q}$ but I don't see how to prove that.
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top