MHB Find Min Polynomial of $\alpha$ Over $\mathbb{Q} | Solution Included

kalish1
Messages
79
Reaction score
0
I started by setting $\alpha= e^{2\pi i/3} + \sqrt[3]{2}.$ Then I obtained $f(x) = x^9 - 9x^6 - 27x^3 - 27$ has $\alpha$ as a root.

How can I proceed to find the minimal polynomial of $\alpha$ over $\mathbb{Q},$ and identify its other roots?
 
Physics news on Phys.org
kalish said:
I started by setting $\alpha= e^{2\pi i/3} + \sqrt[3]{2}.$ Then I obtained $f(x) = x^9 - 9x^6 - 27x^3 - 27$ has $\alpha$ as a root.

How can I proceed to find the minimal polynomial of $\alpha$ over $\mathbb{Q},$ and identify its other roots?
The numbers $e^{2r\pi i/3} + \sqrt[3]{2}e^{2s\pi i/3}$, with $r,s \in\{0,1,2\}$, all satisfy that equation. So that gives you the nine roots of $f(x)$, of which $\alpha$ is one. I'm guessing that $f(x)$ is irreducible over $\mathbb{Q}$ but I don't see how to prove that.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top