MHB Find Min Polynomial of $\alpha$ Over $\mathbb{Q} | Solution Included

Click For Summary
To find the minimal polynomial of $\alpha = e^{2\pi i/3} + \sqrt[3]{2}$ over $\mathbb{Q}$, the polynomial $f(x) = x^9 - 9x^6 - 27x^3 - 27$ is established as having $\alpha$ as a root. The roots of $f(x)$ include all combinations of $e^{2r\pi i/3} + \sqrt[3]{2}e^{2s\pi i/3}$ for $r,s \in \{0,1,2\}$. The discussion raises the possibility that $f(x)$ may be irreducible over $\mathbb{Q}$, but the proof for this irreducibility is not provided. Further exploration is needed to confirm the minimal polynomial and its properties. The conversation emphasizes the challenge of proving irreducibility in this context.
kalish1
Messages
79
Reaction score
0
I started by setting $\alpha= e^{2\pi i/3} + \sqrt[3]{2}.$ Then I obtained $f(x) = x^9 - 9x^6 - 27x^3 - 27$ has $\alpha$ as a root.

How can I proceed to find the minimal polynomial of $\alpha$ over $\mathbb{Q},$ and identify its other roots?
 
Physics news on Phys.org
kalish said:
I started by setting $\alpha= e^{2\pi i/3} + \sqrt[3]{2}.$ Then I obtained $f(x) = x^9 - 9x^6 - 27x^3 - 27$ has $\alpha$ as a root.

How can I proceed to find the minimal polynomial of $\alpha$ over $\mathbb{Q},$ and identify its other roots?
The numbers $e^{2r\pi i/3} + \sqrt[3]{2}e^{2s\pi i/3}$, with $r,s \in\{0,1,2\}$, all satisfy that equation. So that gives you the nine roots of $f(x)$, of which $\alpha$ is one. I'm guessing that $f(x)$ is irreducible over $\mathbb{Q}$ but I don't see how to prove that.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K