Find Min Value: $a,b,c>0$ with $a+b+c=k$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Minimum Value
Click For Summary
SUMMARY

The discussion focuses on minimizing the expression $\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}$ under the constraints $a, b, c > 0$ and $a + b + c = k$. Participants confirm that the problem is well-defined and agree on the necessity of applying optimization techniques to find the minimum value. The solution involves leveraging inequalities and possibly calculus to derive the optimal values of $a$, $b$, and $c$ that satisfy the given conditions.

PREREQUISITES
  • Understanding of optimization techniques in calculus
  • Familiarity with inequalities, particularly the Cauchy-Schwarz inequality
  • Knowledge of basic algebra and functions
  • Experience with mathematical problem-solving involving constraints
NEXT STEPS
  • Study the Cauchy-Schwarz inequality and its applications in optimization
  • Explore methods for solving constrained optimization problems
  • Learn about Lagrange multipliers for handling constraints in optimization
  • Investigate numerical methods for approximating solutions to optimization problems
USEFUL FOR

Mathematicians, students studying optimization, and anyone interested in solving constrained optimization problems in real analysis.

Albert1
Messages
1,221
Reaction score
0
$a,b,c>0$

$a+b+c=k$

find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$
 
Mathematics news on Phys.org
My Solution:

Given $$a+b+c = k$$ and $$a,b,c>0$$

Now we can write $$\sqrt{a^2+b^2} = \left|a+ib\right|$$ and $$\sqrt{b^2+c^2} = \left|b+ic\right|$$ and $$\sqrt{c^2+a^2} = \left|c+ia\right|$$

Where $$i=\sqrt{-1}$$ So Using Triangle Inequality of Complex number

$$\left|a+ib\right|+\left|b+ic\right|+\left|c+ia\right|\geq \left|\left(a+b+c\right)+i\left(b+c+a\right)\right| = \left|k+ik\right|=\sqrt{2}k$$

and equality hold when $$\displaystyle \frac{a}{b} = \frac{b}{c} = \frac{c}{a}$$
 
Last edited by a moderator:
jacks said:
My Solution:

Given $$a+b+c = k$$ and $$a,b,c>0$$

Now we can write $$\sqrt{a^2+b^2} = \left|a+ib\right|$$ and $$\sqrt{b^2+c^2} = \left|b+ic\right|$$ and $$\sqrt{c^2+a^2} = \left|c+ia\right|$$

Where $$i=\sqrt{-1}$$ So Using Triangle Inequality of Complex number

$$\left|a+ib\right|+\left|b+ic\right|+\left|c+ia\right|\geq \left|\left(a+b+c\right)+i\left(b+c+a\right)\right| = \left|k+ik\right|=\sqrt{2}k$$

and equality hold when $$\displaystyle \frac{a}{b} = \frac{b}{c} = \frac{c}{a}$$
nice solution !
 
Albert said:
$a,b,c>0$

$a+b+c=k$

find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$
 

Attachments

  • minimum (AB+BC+EF).jpg
    minimum (AB+BC+EF).jpg
    18.2 KB · Views: 97

Similar threads

Replies
2
Views
1K
Replies
4
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K