Albert1
- 1,221
- 0
$a,b,c>0$
$a+b+c=k$
find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$
$a+b+c=k$
find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$
The discussion focuses on minimizing the expression $\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}$ under the constraints $a, b, c > 0$ and $a + b + c = k$. Participants confirm that the problem is well-defined and agree on the necessity of applying optimization techniques to find the minimum value. The solution involves leveraging inequalities and possibly calculus to derive the optimal values of $a$, $b$, and $c$ that satisfy the given conditions.
PREREQUISITESMathematicians, students studying optimization, and anyone interested in solving constrained optimization problems in real analysis.
nice solution !jacks said:My Solution:
Given $$a+b+c = k$$ and $$a,b,c>0$$
Now we can write $$\sqrt{a^2+b^2} = \left|a+ib\right|$$ and $$\sqrt{b^2+c^2} = \left|b+ic\right|$$ and $$\sqrt{c^2+a^2} = \left|c+ia\right|$$
Where $$i=\sqrt{-1}$$ So Using Triangle Inequality of Complex number
$$\left|a+ib\right|+\left|b+ic\right|+\left|c+ia\right|\geq \left|\left(a+b+c\right)+i\left(b+c+a\right)\right| = \left|k+ik\right|=\sqrt{2}k$$
and equality hold when $$\displaystyle \frac{a}{b} = \frac{b}{c} = \frac{c}{a}$$
Albert said:$a,b,c>0$
$a+b+c=k$
find:$min(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})$