- #1

- 85

- 0

## Homework Statement

Construct $\mathbb{F}_{16}$ as a quotient of $\mathbb{Z}_2[X]$. How many non-zero elements are primitive in this field? Calculate $|GL2_(\mathbb{F}_16)|$.

## Homework Equations

Primitive Theorem

## The Attempt at a Solution

For the first question, I don't know how to construct $\mathbb{F}_{16}$ as a quotient of $\mathbb{Z}_2[X]$. My guess is $\mathbb{Z}_2[X]/p(x)$ where $p(x)$ is not in $\mathbb{Z}_2[X]$.

And the second part which should be 16^4-16^3