MHB Find Optimal Size for Jar with Rectangular Base & Sides for Lowest Material Cost

  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Materials
Click For Summary
The discussion focuses on determining the optimal dimensions for a rectangular jar with an open top that holds 1 liter, aiming to minimize material costs. The jar's length is specified to be 1.5 times its width. The surface area formula for the open-top jar is derived, leading to the equation A = (3/2)w² + (10,000/3)w⁻¹. Participants confirm the calculations and discuss finding the width that minimizes surface area by taking the derivative and setting it to zero, leading to the proposed width of w = 10/(3^(2/3)). The conversation emphasizes the relationship between volume, surface area, and material cost in the design of the jar.
Petrus
Messages
702
Reaction score
0
You will produce a jar with rectangular base and rectangular sides. aLL OF IT
be manufactured in the same material. What size should the jar have on the cost of materials to be as small as possible?
The length of the can should be 1.5 times the width. The jar should hold 1 liter.
here we got a picture
2vdodbk.png
$$V=1000cm^3$$
$$h=\frac{1.5x^2}{1000cm^3}$$
Regards,
$$|\pi\rangle$$
 
Last edited:
Physics news on Phys.org
Petrus said:
You will produce a jar with rectangular base and rectangular sides. aLL OF IT
be manufactured in the same material. What size should the jar have on the cost of materials to be as small as possible?
The length of the can should be 1.5 times the width. The jar should hold 1 liter.
here we got a picture
2vdodbk.png
I got $$A=6x^2$$ and $$V=1000cm^3$$
$$h=\frac{1.5x^2}{1000cm^3}$$
Regards,
$$|\pi\rangle$$

First of all, am I correct in assuming that your box is to be open on the top?

Also, I'm assuming that your use of the word "can" you meant to mean the box? (Cans are usually cylindrical, not rectangular...)
 
Prove It said:
First of all, am I correct in assuming that your box is to be open on the top?

Also, I'm assuming that your use of the word "can" you meant to mean the box? (Cans are usually cylindrical, not rectangular...)
yes the picture is open and they never mention closed, and yes box
 
Petrus said:
You will produce a jar with rectangular base and rectangular sides. aLL OF IT
be manufactured in the same material. What size should the jar have on the cost of materials to be as small as possible?
The length of the can should be 1.5 times the width. The jar should hold 1 liter.
here we got a picture
2vdodbk.png
$$V=1000cm^3$$
$$h=\frac{1.5x^2}{1000cm^3}$$
Regards,
$$|\pi\rangle$$

OK, well for starters, the amount of whatever material the box is made of is the same as the surface area of the box. Since the box has an open top, that means $\displaystyle \begin{align*} A = l\,w + 2l\,h + 2w\,h \end{align*}$.

I agree, $\displaystyle \begin{align*} V = 1000\,\textrm{cm}^3 \end{align*}$, so that means $\displaystyle \begin{align*} l\,w\,h = 1000 \end{align*}$. We're also told that the length should be 1.5 times the width, so $\displaystyle \begin{align*} l = \frac{3w}{2} \end{align*}$, giving

$\displaystyle \begin{align*} l\,w\,h &= 1000 \\ \left( \frac{3w}{2} \right) \, w\, h &= 1000 \\ \frac{3w^2}{2} \, h &= 1000 \\ h &= \frac{2000}{3w^2} \end{align*}$

Substituting into the formula for the surface area we have

$\displaystyle \begin{align*} A &= l\,w + 2l\,h + 2w\,h \\ &= \left( \frac{3w}{2} \right) \, w + 2\left( \frac{3w}{2} \right) \left( \frac{2000}{3w^2} \right) + 2w \, \left( \frac{2000}{3w^2} \right) \\ &= \frac{3w^2}{2} + \frac{2000}{w} + \frac{4000}{3w} \\ &= \frac{3}{2}w^2 + \frac{10\,000}{3} w^{-1} \end{align*}$

So now how can you find the maximum area?
 
Prove It said:
OK, well for starters, the amount of whatever material the box is made of is the same as the surface area of the box. Since the box has an open top, that means $\displaystyle \begin{align*} A = l\,w + 2l\,h + 2w\,h \end{align*}$.

I agree, $\displaystyle \begin{align*} V = 1000\,\textrm{cm}^3 \end{align*}$, so that means $\displaystyle \begin{align*} l\,w\,h = 1000 \end{align*}$. We're also told that the length should be 1.5 times the width, so $\displaystyle \begin{align*} l = \frac{3w}{2} \end{align*}$, giving

$\displaystyle \begin{align*} l\,w\,h &= 1000 \\ \left( \frac{3w}{2} \right) \, w\, h &= 1000 \\ \frac{3w^2}{2} \, h &= 1000 \\ h &= \frac{2000}{3w^2} \end{align*}$

Substituting into the formula for the surface area we have

$\displaystyle \begin{align*} A &= l\,w + 2l\,h + 2w\,h \\ &= \left( \frac{3w}{2} \right) \, w + 2\left( \frac{3w}{2} \right) \left( \frac{2000}{3w^2} \right) + 2w \, \left( \frac{2000}{3w^2} \right) \\ &= \frac{3w^2}{2} + \frac{2000}{w} + \frac{4000}{3w} \\ &= \frac{3}{2}w^2 + \frac{10\,000}{3} w^{-1} \end{align*}$

So now how can you find the maximum area?
we derivate it then equal zero, that means $$w=\frac{10}{3^{2/3}}$$ is that correct?

Regards,
$$|\pi\rangle$$
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 0 ·
Replies
0
Views
5K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K