MHB Find Order of Accuracy: Solve Mistake Worried

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Accuracy
Click For Summary
The discussion focuses on determining the order of accuracy for a numerical method given specific values of step sizes and errors. The initial calculation led to an incorrect result, suggesting a misunderstanding of the relationship between the errors and step sizes. A participant corrected the approach by noting that since the smaller step size should yield a smaller error, the correct formula involves the ratio of the errors and step sizes. The revised calculation shows that the order of accuracy is indeed 1, aligning with expectations. The key takeaway is the importance of accurately applying the relationship between error and step size in numerical methods.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Suppose that we are given $h_1=0.1 \to \delta_1=0.01$ and $h_2=0.05 \to \delta_2=0.025$ and we want to find the order of accuracy of the method.
I have tried the following:

$\delta_1^n= c h_1^{p+1}, \delta_2^n=c h_2^{p+1} \Rightarrow p+1= \frac{\log \left( \frac{\delta_1^n}{\delta_2^n}\right)}{\log \left( \frac{h_1}{h_2} \right)}= \frac{\log 2- \log 5}{\log 2} \Rightarrow p= \frac{- \log 2}{\log 5}$.

But the result should be 1. Where is my mistake? (Worried)
 
Mathematics news on Phys.org
evinda said:
Hello! (Wave)

Suppose that we are given $h_1=0.1 \to \delta_1=0.01$ and $h_2=0.05 \to \delta_2=0.025$ and we want to find the order of accuracy of the method.
I have tried the following:

$\delta_1^n= c h_1^{p+1}, \delta_2^n=c h_2^{p+1} \Rightarrow p+1= \frac{\log \left( \frac{\delta_1^n}{\delta_2^n}\right)}{\log \left( \frac{h_1}{h_2} \right)}= \frac{\log 2- \log 5}{\log 2} \Rightarrow p= \frac{- \log 2}{\log 5}$.

But the result should be 1. Where is my mistake? (Worried)

Hey! (Smile)

Since $h_2$ is smaller than $h_1$, I'd expect $\delta_2$ to be smaller than $\delta_1$. :eek:

Perhaps it should be:
$$p+1= \frac{\log \left( \frac{\delta_1}{\delta_2}\right)}{\log \left( \frac{h_1}{h_2} \right)}
=\frac{\log \left( \frac{0.01}{0.0025}\right)}{\log \left( \frac{0.1}{0.05} \right)}
= \frac{\log 4}{\log 2} = 2 \qquad\Rightarrow\qquad p = 1$$
(Wondering)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
1
Views
938
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
7K