Find P(X+Y>1/2) for given joint density function

Click For Summary

Discussion Overview

The discussion revolves around calculating the probability ##P(X+Y>1/2)## for a given joint density function of random variables ##X## and ##Y##. Participants explore the integration process involved in determining this probability, including the setup of double integrals and the evaluation of limits.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents the joint density function and initial calculations for ##P(X+Y>1/2)##, suggesting a potential error in their integration process.
  • Another participant encourages the first to detail their steps in the integration to identify any mistakes.
  • A later reply provides a detailed breakdown of the double integral, but notes that their result does not match the expected solution of ##P(X+Y>1/2) = \frac{\ln(2)}{2}##.
  • One participant calculates an alternative result of ##1 - \frac{\ln(2)}{2}##, which aligns with the previous participant's numeric approximation.
  • There is a suggestion that the discrepancy may arise from a misunderstanding in the book regarding the calculation of ##P(X+Y<1/2)## instead.

Areas of Agreement / Disagreement

Participants generally agree on the calculations performed, but there is disagreement regarding the correctness of the book's stated solution. The discussion remains unresolved as to whether the book's answer is incorrect or if there is an error in the participants' calculations.

Contextual Notes

Participants express uncertainty about the limits of integration and the potential for misinterpretation of the problem statement in the book.

Peter_Newman
Messages
155
Reaction score
11
Hey everybody, :smile:

I have a joint density of the random variables ##X## and ##Y## given and want to find out ##P(X+Y>1/2)##.

The joint density is as follows:

$$f_{XY}(x,y) = \begin{cases}\frac{1}{y}, &0<x<y,0<y<1 \\ 0, &else \end{cases}$$

To get a view of this I created a plot:

Areas2.PNG


As usual I would split the area up into two sub areas (see red dots) and doube integrate this. In this case for instance my calculation is the following:

$$P(X+Y>1/2) = P(Y>1/2 - X) = \int_{y=0.5}^{1} \int_{x=0}^{y} \frac{1}{y} \, dx dy + \int_{0.25}^{0.5} \int_{x=0.5-y}^{y} \frac{1}{y} \, dx dy \approx 0.5 + 0.1534 \approx 0.6534$$

The solution should be ##P(X+Y>1/2) = \frac{\ln(2)}{2}##, which I can not explain, that why I'am asking here. I think in my integral there could be a mistake, but I don't see the error...

I would be very happy for answers to this! Thank you! :smile:
 
Physics news on Phys.org
That looks correct, as far as you've gone.
I suggest you write out the remainder of the steps you took to reach your numeric answer, doing first the inner and then the outer integrals and finally inserting the outer integration limits to obtain a closed formula for the result.
Advisors will then be able to spot any errors in your working.
 
Hello, thank you for the answer.

I will gladly comply with the request and show here my exact calculation path for the double integral:

$$\int_{y=0.5}^{1} \int_{x=0}^{y} \frac{1}{y} \, dx dy + \int_{0.25}^{0.5} \int_{x=0.5-y}^{y} \frac{1}{y} \, dx dy$$

$$= \int_{0.5}^{1} \left(\int_{0}^{y} \frac{1}{y} \, dx\right) \, dy + \int_{0.25}^{0.5} \left(\int_{x=0.5-y}^{y} \frac{1}{y} \, dx \right) \, dy $$

$$= \int_{0.5}^{1} \left( 1\right) \, dy + \int_{0.25}^{0.5} \left(2-\frac{0.5}{y} \right) \, dy $$
$$= 0.5 + 0.153426$$

But this equals not the "original solution" ##P(X+Y>1/2) = \frac{\ln(2)}{2}##...
 
Last edited:
I get 1 - log(2)/2, which is approx 0.653. So my calc agrees with yours. Maybe the book has the wrong answer. It happens.
 
Last edited:
Hello,

thank you for your reply and confirmation of the calculation. And my integral limits are not set wrong?

I think that assuming there is an error in the book, it comes from the fact that the authors have calculated ##P(X+Y<1/2)##, which would be the small triangle that arises when you draw the diagonal to 0. This would be, so to speak, the "white triangle" from the diagonal to the colored area (0 to 0.5 on y-axis and 0.25 x-axis (but integral limits are different here...)...
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K