MHB Find Point D on Plane for 4 Unit Cube Pyramid

jaychay
Messages
58
Reaction score
0
Find point d on the line of r(t)=(0,0,0)+(−1,1,1)t which make the triangular pyramid abcd has the volume of 4 unit cube when a(0,0,0),b(1,0,1),c(0,1,0) are the points on the plane of −x+z=0.

vector.png
 
Last edited by a moderator:
Physics news on Phys.org
The area $B$ of the base rectangular triangle $\Delta abc$ is $B=\frac 12\cdot ab\cdot ac = \frac 12 \sqrt 2\cdot 1$.
The volume of the pyramid is $V=\frac 13 Bh$, where $B$ is the area of the base, and $h$ is the height perpendicular to the base.
The normal vector $\vec n$ of the plane can be deduced from its equation $-x+z=0$, meaning it is $\vec n=(-1,0,1)$.
The height $h$ of the pyramid is the projection of the vector $\overrightarrow{ad}$ onto the normal vector $\vec n$.
The formula for that projection is $h=\frac{\overrightarrow{\mathstrut ad} \cdot \overrightarrow{\mathstrut n}}{\|\vec n\|}$.

So we have:
$$\begin{cases}B=\frac 12\sqrt 2 \\
V=\frac 13 Bh = 4 \\
\vec n = (-1,0,1) \\
h=\frac{\overrightarrow{\mathstrut ad} \cdot \overrightarrow{\mathstrut n}}{\|\vec n\|} = \frac{(-1,1,1)t \cdot (-1,0,1)}{\|(-1,0,1)\|} = \frac{2}{\sqrt 2}t=t\sqrt 2
\end{cases}
\implies V = \frac 13 \cdot \frac 12\sqrt 2 \cdot t\sqrt 2 = 4
\implies t = 12
$$
So point $d$ is $(0,0,0)+(-1,1,1)12=(-12,12,12)$.
 
Thank you very much !
 
I learned (long ago) this formula for the distance from a point, $(x_1,y_1,z_1)$ to a plane $Ax+By+Cz+D = 0$

$d = \dfrac{|Ax_1+By_1+Cz_1+D|}{\sqrt{A^2+B^2+C^2}}$

$V = \dfrac{Bh}{3} = \dfrac{1}{\sqrt{2}} \cdot \dfrac{h}{3} = 4 \implies h = 12 \sqrt{2}$

$12\sqrt{2} = \dfrac{|-1(-t) + 0(t) + 1(t) + 0|}{\sqrt{(-1)^2 + 0^2 + 1^2}}$

$12\sqrt{2} = \dfrac{2t}{\sqrt{2}} \implies t = 12$
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top