MHB Find Point D on Plane for 4 Unit Cube Pyramid

Click For Summary
To find point D on the line r(t) = (0,0,0) + (-1,1,1)t for a triangular pyramid ABCD with a volume of 4 unit cubes, the area B of the base triangle ABC is calculated as B = 1/2 * √2. The volume V of the pyramid is given by V = 1/3 * B * h, where h is the height from point A to the plane defined by points A, B, and C. The height h is determined through the projection of vector AD onto the normal vector of the plane, leading to the conclusion that t must equal 12. Consequently, point D is found to be at coordinates (-12, 12, 12).
jaychay
Messages
58
Reaction score
0
Find point d on the line of r(t)=(0,0,0)+(−1,1,1)t which make the triangular pyramid abcd has the volume of 4 unit cube when a(0,0,0),b(1,0,1),c(0,1,0) are the points on the plane of −x+z=0.

vector.png
 
Last edited by a moderator:
Physics news on Phys.org
The area $B$ of the base rectangular triangle $\Delta abc$ is $B=\frac 12\cdot ab\cdot ac = \frac 12 \sqrt 2\cdot 1$.
The volume of the pyramid is $V=\frac 13 Bh$, where $B$ is the area of the base, and $h$ is the height perpendicular to the base.
The normal vector $\vec n$ of the plane can be deduced from its equation $-x+z=0$, meaning it is $\vec n=(-1,0,1)$.
The height $h$ of the pyramid is the projection of the vector $\overrightarrow{ad}$ onto the normal vector $\vec n$.
The formula for that projection is $h=\frac{\overrightarrow{\mathstrut ad} \cdot \overrightarrow{\mathstrut n}}{\|\vec n\|}$.

So we have:
$$\begin{cases}B=\frac 12\sqrt 2 \\
V=\frac 13 Bh = 4 \\
\vec n = (-1,0,1) \\
h=\frac{\overrightarrow{\mathstrut ad} \cdot \overrightarrow{\mathstrut n}}{\|\vec n\|} = \frac{(-1,1,1)t \cdot (-1,0,1)}{\|(-1,0,1)\|} = \frac{2}{\sqrt 2}t=t\sqrt 2
\end{cases}
\implies V = \frac 13 \cdot \frac 12\sqrt 2 \cdot t\sqrt 2 = 4
\implies t = 12
$$
So point $d$ is $(0,0,0)+(-1,1,1)12=(-12,12,12)$.
 
Thank you very much !
 
I learned (long ago) this formula for the distance from a point, $(x_1,y_1,z_1)$ to a plane $Ax+By+Cz+D = 0$

$d = \dfrac{|Ax_1+By_1+Cz_1+D|}{\sqrt{A^2+B^2+C^2}}$

$V = \dfrac{Bh}{3} = \dfrac{1}{\sqrt{2}} \cdot \dfrac{h}{3} = 4 \implies h = 12 \sqrt{2}$

$12\sqrt{2} = \dfrac{|-1(-t) + 0(t) + 1(t) + 0|}{\sqrt{(-1)^2 + 0^2 + 1^2}}$

$12\sqrt{2} = \dfrac{2t}{\sqrt{2}} \implies t = 12$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
31
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
2K
Replies
9
Views
655
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K