Find potential energy using time-independent Schrodinger's equation

AI Thread Summary
The discussion revolves around determining the potential energy function U(x) using the time-independent Schrödinger equation. The derived expression for U(x) is (2h^2/mL^4)(x^2 - 3L^2/2), which indicates a parabolic shape centered at x = 0. The solution key confirms that U(0) equals −3h^2/mL^2, suggesting that plugging in x = 0 yields the correct value for U(x). The participants clarify that the parabolic nature of U(x) is evident from its quadratic form. Understanding these aspects is crucial for accurately interpreting the potential energy in quantum mechanics.
eloiseh
Messages
2
Reaction score
0
Homework Statement
In a region of space, a particle with mass m and with zero energy has a time-independent wave function ψ(x) = Axe^(−x^2/L^2) where A and L are constants.
Determine the potential energy U(x) of the particle.
Relevant Equations
The time-independent Schrodinger's equation
I had found what U(x) was equal to already by plugging in the wave function and simplifying, which is (2h^2/mL^4)(x^2 - 3L^2/2) by the way.

But the solution key that I have goes an extra step. After stating the equation of U(x) that I got, it says that: "U(x) is a parabola centred at x = 0 with U(0) = −3h^2/mL^2"

Does that mean that I have to plug 0 in for x for the right answer? And how to determine that U(x) is a parabola centred at x=0?
 
Physics news on Phys.org
eloiseh said:
I had found what U(x) was equal to already by plugging in the wave function and simplifying, which is (2h^2/mL^4)(x^2 - 3L^2/2) by the way.

Does that mean that I have to plug 0 in for x for the right answer? And how to determine that U(x) is a parabola centred at x=0?
Your solution is a parabola centred at ##x=0##.
 
PeroK said:
Your solution is a parabola centred at ##x=0##.
Thank you so much!
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top