Find Product: $(a^4+b^4+c^4)$ and $(a^6+b^6+c^6)$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Product
Click For Summary

Discussion Overview

The discussion revolves around finding the values of $(a^4+b^4+c^4)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)$ and $(a^6+b^6+c^6)\left(\dfrac{1}{a^6}+\dfrac{1}{b^6}+\dfrac{1}{c^6}\right)$ given certain conditions involving sums of powers of $a$, $b$, and $c$. The context includes mathematical reasoning and problem-solving related to algebraic identities and competition problems.

Discussion Character

  • Mathematical reasoning, Homework-related

Main Points Raised

  • Post 1 presents the problem and the conditions involving $(a^2+b^2+c^2)$ and $(a^3+b^3+c^3)$, asking for the corresponding products for the fourth and sixth powers.
  • Post 2 acknowledges the challenge and confirms the validity of the solution provided by the original poster, while also noting that the problem may originate from a high school competition in China.

Areas of Agreement / Disagreement

Participants have not reached a consensus on the validity of the problem's conditions, as Post 2 indicates a need for further confirmation from the original poster regarding the problem's validity.

Contextual Notes

The discussion does not resolve the mathematical steps necessary to derive the requested products, and there are no explicit assumptions or definitions provided that clarify the context of the variables $a$, $b$, and $c$.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ be numbers such that $(a^2+b^2+c^2)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=26$ and $(a^3+b^3+c^3)\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=78$. Find the value of $(a^4+b^4+c^4)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)$ and $(a^6+b^6+c^6)\left(\dfrac{1}{a^6}+\dfrac{1}{b^6}+\dfrac{1}{c^6}\right)$.
 
Mathematics news on Phys.org
Let $S_n = \dfrac{a^n}{b^n} + \dfrac{b^n}{c^n} + \dfrac{c^n}{a^n}$, and let $T_n = \dfrac{b^n}{a^n} + \dfrac{c^n}{b^n} + \dfrac{a^n}{c^n}$. Then $$26 = (a^2+b^2+c^2)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right) = 3 + S_2 + T_2$$ and $$78 = (a^3+b^3+c^3)\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right) = 3 + S_3 + T_3.$$ Therefore $S_2 + T_2 = 23$ and $S_3 + T_3 = 75$.

The equation with roots $\frac ab$, $\frac bc$ and $\frac ca$ is $x^3 - S_1x^2 + T_1x - 1 = 0$, and the equation with roots $\frac ba$, $\frac cb$ and $\frac ac$ is $x^3 - T_1x^2 + S_1x - 1 = 0$. Use Newton's_identities on these equations, to get $$S_2 = S_1^2 - 2T_1,\qquad T_2 = T_1^2 - 2S_1$$. Therefore $$S_2 + T_2 = S_1^2 + T_1^2 - 2(S_1 + T_1) = (S_1+T_1)^2 - 2S_1T_1 - 2(S_1 + T_1).$$ Now write $p=S_1+T_1$ and $q = S_1T_1$, getting $S_2 + T_2 = p^2 - 2p - 2q$, so that $$(*)\quad p^2 - 2p - 2q = 23.$$

In a similar way, using Newton's identities again, $$S_3 = S_1^3 - 3S_1T_1 + 3, \qquad T_3 = T_1^3 - 3S_1T_1 + 3,$$ and so $$S_3 + T_3 = S_1^3 + T_1^3 - 6S_1T_1 + 6 = (S_1 + T_1)^3 - 3S_1T_1(S_1+T_1) - 6S_1T_1 + 6 = p^3 - 3pq - 6q + 6.$$ Therefore $$(**)\quad p^3 - 3pq - 6q = 69.$$

From $(*)$ and $(**)$ it follows that $$p^3 - 3p^2 - 3pq + 6p = 0,$$ $$2p^3 - 6p^2 - 3p(p^2 - 2p - 23) + 12 p = 0,$$ $$-p^3 + 81p = 0.$$ So $p$ is either $0$ or $\pm9$, and the corresponding values for $q$ are $-11.5$, $20$ and $38$. Then $S_1$ and $T_1$, which are the solutions of the equation $x^2 - px + q = 0$, must be the solutions of one of the equations $$x^2 - 11.5 = 0, \qquad x^2 - 9x + 20 = 0, \qquad x^2 + 9x + 38 = 0.$$ The last of those equations has no real solutions. So $\{S_1,T_1\}$ must be either $\{\sqrt{11.5},-\sqrt{11.5}\}$ or $\{4,5\}$. Therefore $\frac ab$, $\frac bc$ and $\frac ca$ (or their reciprocals) are the solutions of one of the equations $
x^3 - \sqrt{11.5}x^2 - \sqrt{11.5}x - 1 = 0$ or $x^3 - 4x^2 + 5x - 1 = 0$. But neither of those cubic equations has three real roots. It follows that there are no real numbers $a,b,c$ satisfying the given equations $(a^2+b^2+c^2)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right) = 26$ and $(a^3+b^3+c^3)\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right) = 78$.

So there is something wrong either with the problem or with my solution.

If complex numbers are allowed then Newton's identities could be used to find values for $(a^4+b^4+c^4)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)$ and $(a^6+b^6+c^6)\left(\dfrac{1}{a^6}+\dfrac{1}{b^6}+\dfrac{1}{c^6}\right)$. But then there would be three possible values for $\{S_1,T_1\}$, and the problem would not have a unique solution.
 
Hi Opalg! Thanks for participating in this unsolved challenge. I just double checked your solution and it seems there is nothing wrong with it. But just to let you know, I believe this is a competition problem from a high school in China and I will wait for the poster to mention anything about the validity of the problem and post back here.
 
I remember, I put this into my CAS and it was just boring algebraic equation manipulation. Such boring that I didn't even post the solution to give someone else the happiness... Unfortunately I don't have much time now to reproduce my solution. Maybe someone could give this another shot?
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K