MHB Find Product: $(a^4+b^4+c^4)$ and $(a^6+b^6+c^6)$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Product
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c$ be numbers such that $(a^2+b^2+c^2)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)=26$ and $(a^3+b^3+c^3)\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=78$. Find the value of $(a^4+b^4+c^4)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)$ and $(a^6+b^6+c^6)\left(\dfrac{1}{a^6}+\dfrac{1}{b^6}+\dfrac{1}{c^6}\right)$.
 
Mathematics news on Phys.org
Let $S_n = \dfrac{a^n}{b^n} + \dfrac{b^n}{c^n} + \dfrac{c^n}{a^n}$, and let $T_n = \dfrac{b^n}{a^n} + \dfrac{c^n}{b^n} + \dfrac{a^n}{c^n}$. Then $$26 = (a^2+b^2+c^2)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right) = 3 + S_2 + T_2$$ and $$78 = (a^3+b^3+c^3)\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right) = 3 + S_3 + T_3.$$ Therefore $S_2 + T_2 = 23$ and $S_3 + T_3 = 75$.

The equation with roots $\frac ab$, $\frac bc$ and $\frac ca$ is $x^3 - S_1x^2 + T_1x - 1 = 0$, and the equation with roots $\frac ba$, $\frac cb$ and $\frac ac$ is $x^3 - T_1x^2 + S_1x - 1 = 0$. Use Newton's_identities on these equations, to get $$S_2 = S_1^2 - 2T_1,\qquad T_2 = T_1^2 - 2S_1$$. Therefore $$S_2 + T_2 = S_1^2 + T_1^2 - 2(S_1 + T_1) = (S_1+T_1)^2 - 2S_1T_1 - 2(S_1 + T_1).$$ Now write $p=S_1+T_1$ and $q = S_1T_1$, getting $S_2 + T_2 = p^2 - 2p - 2q$, so that $$(*)\quad p^2 - 2p - 2q = 23.$$

In a similar way, using Newton's identities again, $$S_3 = S_1^3 - 3S_1T_1 + 3, \qquad T_3 = T_1^3 - 3S_1T_1 + 3,$$ and so $$S_3 + T_3 = S_1^3 + T_1^3 - 6S_1T_1 + 6 = (S_1 + T_1)^3 - 3S_1T_1(S_1+T_1) - 6S_1T_1 + 6 = p^3 - 3pq - 6q + 6.$$ Therefore $$(**)\quad p^3 - 3pq - 6q = 69.$$

From $(*)$ and $(**)$ it follows that $$p^3 - 3p^2 - 3pq + 6p = 0,$$ $$2p^3 - 6p^2 - 3p(p^2 - 2p - 23) + 12 p = 0,$$ $$-p^3 + 81p = 0.$$ So $p$ is either $0$ or $\pm9$, and the corresponding values for $q$ are $-11.5$, $20$ and $38$. Then $S_1$ and $T_1$, which are the solutions of the equation $x^2 - px + q = 0$, must be the solutions of one of the equations $$x^2 - 11.5 = 0, \qquad x^2 - 9x + 20 = 0, \qquad x^2 + 9x + 38 = 0.$$ The last of those equations has no real solutions. So $\{S_1,T_1\}$ must be either $\{\sqrt{11.5},-\sqrt{11.5}\}$ or $\{4,5\}$. Therefore $\frac ab$, $\frac bc$ and $\frac ca$ (or their reciprocals) are the solutions of one of the equations $
x^3 - \sqrt{11.5}x^2 - \sqrt{11.5}x - 1 = 0$ or $x^3 - 4x^2 + 5x - 1 = 0$. But neither of those cubic equations has three real roots. It follows that there are no real numbers $a,b,c$ satisfying the given equations $(a^2+b^2+c^2)\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right) = 26$ and $(a^3+b^3+c^3)\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right) = 78$.

So there is something wrong either with the problem or with my solution.

If complex numbers are allowed then Newton's identities could be used to find values for $(a^4+b^4+c^4)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)$ and $(a^6+b^6+c^6)\left(\dfrac{1}{a^6}+\dfrac{1}{b^6}+\dfrac{1}{c^6}\right)$. But then there would be three possible values for $\{S_1,T_1\}$, and the problem would not have a unique solution.
 
Hi Opalg! Thanks for participating in this unsolved challenge. I just double checked your solution and it seems there is nothing wrong with it. But just to let you know, I believe this is a competition problem from a high school in China and I will wait for the poster to mention anything about the validity of the problem and post back here.
 
I remember, I put this into my CAS and it was just boring algebraic equation manipulation. Such boring that I didn't even post the solution to give someone else the happiness... Unfortunately I don't have much time now to reproduce my solution. Maybe someone could give this another shot?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top