Albert1
- 1,221
- 0
Attachments
Last edited:
The discussion revolves around calculating the radius of a circle using trigonometric and geometric methods. Participants explore different approaches to solve the problem, including the use of trigonometric identities and geometric area calculations.
There appears to be no consensus on a single method, as participants propose different approaches (trigonometric vs. geometric) without resolving which is preferable or more accurate.
The discussion includes assumptions about the relationships between angles and sides in the triangle, as well as the dependence on the diagram provided, which may not be fully described in the text.
[sp]I used trigonometry. If $\theta$ is the angle $BAC$, then $\sin\theta = 3/5$. If $t = \tan(\theta/2)$ then one of the half-angle formulas says that $\sin\theta = \dfrac{2t}{1+t^2} = \dfrac35$, from which $3t^2-10t+3=0.$ The solutions to that are $t=1/3$ and $t=3$. Clearly $t=3$ is too big, and so $\tan(\theta/2) = 1/3.$ But the line $AO_1$ bisects angle $BAC$, and therefore $O_1Q/AQ = 1/3$. So $AQ=3s$. Since $QC = O_1R = 3s$, it follows that $12 = AC = 6s$, and so $s=2$.[/sp]Albert said:
[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]Albert said:I will use geometry ,
maybe someone want to try it first
yes ,you got it:)Opalg said:[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]