Albert1
- 1,221
- 0
Attachments
Last edited:
[sp]I used trigonometry. If $\theta$ is the angle $BAC$, then $\sin\theta = 3/5$. If $t = \tan(\theta/2)$ then one of the half-angle formulas says that $\sin\theta = \dfrac{2t}{1+t^2} = \dfrac35$, from which $3t^2-10t+3=0.$ The solutions to that are $t=1/3$ and $t=3$. Clearly $t=3$ is too big, and so $\tan(\theta/2) = 1/3.$ But the line $AO_1$ bisects angle $BAC$, and therefore $O_1Q/AQ = 1/3$. So $AQ=3s$. Since $QC = O_1R = 3s$, it follows that $12 = AC = 6s$, and so $s=2$.[/sp]Albert said:
[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]Albert said:I will use geometry ,
maybe someone want to try it first
yes ,you got it:)Opalg said:[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]