MHB Find Radius of Circle: Calculate Here

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Circle Radius
AI Thread Summary
The discussion focuses on calculating the radius of a circle using trigonometry and geometry. The initial solution employs the half-angle formula, leading to the equation $3t^2 - 10t + 3 = 0$, with the valid solution for $\tan(\theta/2)$ being $1/3$. The geometry approach involves dividing triangle ABC into smaller triangles, calculating their areas, and equating them to find the value of $s$. Ultimately, both methods confirm that $s = 2$. The calculations demonstrate the interplay between trigonometric identities and geometric properties in solving for the radius.
Albert1
Messages
1,221
Reaction score
0

Attachments

  • find radii s.JPG
    find radii s.JPG
    27.5 KB · Views: 91
Last edited:
Mathematics news on Phys.org
My solution
This is going to be algebraic. I'm assuming someone will give a geometric answer. If we flip the picture, then we can come up with the equation of the second circle (the one tangent to the line)

$ (x-3s)^2+(y-s)^2 = s^2$

and the equation of the straight line itself $ y = 9 - \dfrac{9}{12}x$

Now if $(x_0,y_0)$ is the point on the circle whose tangent is the line then we can also come up with the tangent line using calculus, namely

$y - y_0 = - \dfrac{(x_0 - 3s)}{(y_0-s)}( x - x_0)$

As the two lines must be the same gives (eliminate $y$ and isolate the coefficients wrt $x$)

$\dfrac{3}{4}-{\dfrac {{ x_0}}{{ y_0}-s}}+3\,{\dfrac {s}{{ y_0}-s}}=0\;\;\;(1)$$-9+{\it y_0}+{\dfrac {{{ x_0}}^{2}}{{ y_0}-s}}-3\,{\dfrac {s{ x_0}}
{{\it y_0}-s}}
= 0\;\;\;\;(2)$Furthermore, we know that $(x_0,y_0)$ is on the circle so

$ (x_0-3s)^2+(y_0-s)^2 = s^2\;\;\;(3)$

From (1) we find that $y_0 = -3s + \dfrac{4}{3} x_0$ and with this, from (2) we obtain

$x_0 = \dfrac{36}{25} s+\dfrac{108}{25}$ and with these two gives (3) as

${\frac {72}{25}}\, \left( s-2 \right) \left( 2\,s-9 \right) =0$

Clearly $s = 9/2$ is too large thus giving $s = 2$, the radius of the circle.
 
Last edited:
Albert said:
[sp]I used trigonometry. If $\theta$ is the angle $BAC$, then $\sin\theta = 3/5$. If $t = \tan(\theta/2)$ then one of the half-angle formulas says that $\sin\theta = \dfrac{2t}{1+t^2} = \dfrac35$, from which $3t^2-10t+3=0.$ The solutions to that are $t=1/3$ and $t=3$. Clearly $t=3$ is too big, and so $\tan(\theta/2) = 1/3.$ But the line $AO_1$ bisects angle $BAC$, and therefore $O_1Q/AQ = 1/3$. So $AQ=3s$. Since $QC = O_1R = 3s$, it follows that $12 = AC = 6s$, and so $s=2$.[/sp]
 
I will use geometry ,
maybe someone want to try it first
 
Albert said:
I will use geometry ,
maybe someone want to try it first
[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]
 
Opalg said:
[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]
yes ,you got it:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top