Albert1
- 1,221
- 0
Attachments
Last edited:
The discussion focuses on calculating the radius of a circle using trigonometric principles and geometric relationships. The angle BAC is defined with a sine value of 3/5, leading to the equation 3t² - 10t + 3 = 0, where t represents tan(θ/2). The solution reveals that s equals 2, derived from equating the area of triangle ABC to the sum of the areas of three smaller triangles formed within it. This method demonstrates the effective application of trigonometry and geometry in solving for the radius.
PREREQUISITESMathematicians, geometry enthusiasts, students studying trigonometry, and anyone interested in applying trigonometric methods to solve geometric problems.
[sp]I used trigonometry. If $\theta$ is the angle $BAC$, then $\sin\theta = 3/5$. If $t = \tan(\theta/2)$ then one of the half-angle formulas says that $\sin\theta = \dfrac{2t}{1+t^2} = \dfrac35$, from which $3t^2-10t+3=0.$ The solutions to that are $t=1/3$ and $t=3$. Clearly $t=3$ is too big, and so $\tan(\theta/2) = 1/3.$ But the line $AO_1$ bisects angle $BAC$, and therefore $O_1Q/AQ = 1/3$. So $AQ=3s$. Since $QC = O_1R = 3s$, it follows that $12 = AC = 6s$, and so $s=2$.[/sp]Albert said:
[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]Albert said:I will use geometry ,
maybe someone want to try it first
yes ,you got it:)Opalg said:[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]