Find Radius of Circle: Calculate Here

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Circle Radius
Click For Summary
SUMMARY

The discussion focuses on calculating the radius of a circle using trigonometric principles and geometric relationships. The angle BAC is defined with a sine value of 3/5, leading to the equation 3t² - 10t + 3 = 0, where t represents tan(θ/2). The solution reveals that s equals 2, derived from equating the area of triangle ABC to the sum of the areas of three smaller triangles formed within it. This method demonstrates the effective application of trigonometry and geometry in solving for the radius.

PREREQUISITES
  • Understanding of trigonometric functions, specifically sine and tangent.
  • Familiarity with half-angle formulas in trigonometry.
  • Basic knowledge of geometric area calculations.
  • Proficiency in applying the Pythagorean theorem in triangle problems.
NEXT STEPS
  • Study the derivation and applications of half-angle formulas in trigonometry.
  • Explore advanced geometric area calculations involving triangles.
  • Learn about the properties of triangles and their relationships in circle geometry.
  • Investigate the use of trigonometry in solving real-world problems involving circles.
USEFUL FOR

Mathematicians, geometry enthusiasts, students studying trigonometry, and anyone interested in applying trigonometric methods to solve geometric problems.

Albert1
Messages
1,221
Reaction score
0

Attachments

  • find radii s.JPG
    find radii s.JPG
    27.5 KB · Views: 101
Last edited:
Mathematics news on Phys.org
My solution
This is going to be algebraic. I'm assuming someone will give a geometric answer. If we flip the picture, then we can come up with the equation of the second circle (the one tangent to the line)

$ (x-3s)^2+(y-s)^2 = s^2$

and the equation of the straight line itself $ y = 9 - \dfrac{9}{12}x$

Now if $(x_0,y_0)$ is the point on the circle whose tangent is the line then we can also come up with the tangent line using calculus, namely

$y - y_0 = - \dfrac{(x_0 - 3s)}{(y_0-s)}( x - x_0)$

As the two lines must be the same gives (eliminate $y$ and isolate the coefficients wrt $x$)

$\dfrac{3}{4}-{\dfrac {{ x_0}}{{ y_0}-s}}+3\,{\dfrac {s}{{ y_0}-s}}=0\;\;\;(1)$$-9+{\it y_0}+{\dfrac {{{ x_0}}^{2}}{{ y_0}-s}}-3\,{\dfrac {s{ x_0}}
{{\it y_0}-s}}
= 0\;\;\;\;(2)$Furthermore, we know that $(x_0,y_0)$ is on the circle so

$ (x_0-3s)^2+(y_0-s)^2 = s^2\;\;\;(3)$

From (1) we find that $y_0 = -3s + \dfrac{4}{3} x_0$ and with this, from (2) we obtain

$x_0 = \dfrac{36}{25} s+\dfrac{108}{25}$ and with these two gives (3) as

${\frac {72}{25}}\, \left( s-2 \right) \left( 2\,s-9 \right) =0$

Clearly $s = 9/2$ is too large thus giving $s = 2$, the radius of the circle.
 
Last edited:
Albert said:
[sp]I used trigonometry. If $\theta$ is the angle $BAC$, then $\sin\theta = 3/5$. If $t = \tan(\theta/2)$ then one of the half-angle formulas says that $\sin\theta = \dfrac{2t}{1+t^2} = \dfrac35$, from which $3t^2-10t+3=0.$ The solutions to that are $t=1/3$ and $t=3$. Clearly $t=3$ is too big, and so $\tan(\theta/2) = 1/3.$ But the line $AO_1$ bisects angle $BAC$, and therefore $O_1Q/AQ = 1/3$. So $AQ=3s$. Since $QC = O_1R = 3s$, it follows that $12 = AC = 6s$, and so $s=2$.[/sp]
 
I will use geometry ,
maybe someone want to try it first
 
Albert said:
I will use geometry ,
maybe someone want to try it first
[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]
 
Opalg said:
[sp]I believe that the dashed lines in the diagram give a clue. They divide the triangle ABC into three smaller triangles, whose areas are $\frac12(12s)$, $\frac12(9(3s))$ and $\frac12(15s)$ (using Pythagoras to get the hypotenuse of triangle ABC as 15). The area of the whole triangle is $\frac12(9\times12)$. Equating that to the sum of the three smaller areas easily gives the equation $27s=54$ from which $s=2$.[/sp]
yes ,you got it:)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
2
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K