1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Find solution to differential equation(Check answer please)

  1. Oct 22, 2009 #1
    1. The problem statement, all variables and given/known data

    [tex]\frac{dy}{dx}=4y^{3} -81y[/tex]

    There is no initial condition, no constant to solve for. C suffices for the answer the professor is looking for.

    I've worked through this problem a couple of times now. It's a separable differential equation and to take the integral of one side requires partial fractions.

    For the values of A, B and C when solving the partial fractions I got:

    [tex]A=-\frac{1}{81}[/tex] [tex]B=\frac{1}{81}[/tex] [tex]C=\frac{1}{81}[/tex]

    The problem is for extra credit and so I need confirmation on whether or not my following answer is correct.

    2. Relevant equations

    **NONE**

    3. The attempt at a solution

    Here is the solution that I got after checking my work and having done the problem a number of times:

    [tex]y=\pm\sqrt{\frac{-81}{ce^{162x}-4}}[/tex]

    Is this right?
     
  2. jcsd
  3. Oct 22, 2009 #2

    HallsofIvy

    User Avatar
    Staff Emeritus
    Science Advisor

    That is not what I get. Presumably, you got x as a function of y and then solved for y. What equation did you solve for y?
     
  4. Oct 22, 2009 #3
    I start by dividing both sides by 4y^3 -81y, and multiplying both sides by dx so that I have the following equation to integrate:

    [tex]\frac{1}{4y^3-81y}dy=dx[/tex]

    I take the integral of both sides of the equation and use partial fractions on the left side of it to be able to integrate and break apart the expression into three fractions.

    Yes I did solve for y as a function of x. There really was no formula that I used other than the process I have sort of detailed which simply consists of separating the original equation so that I can integrate each side as shown above and just taking it from there.

    I don't know what other information I can share. I guess I can write up all my steps, though that's take a while on latex but I'm willing to do it if it would help.
     
  5. Oct 22, 2009 #4

    Dick

    User Avatar
    Science Advisor
    Homework Helper

    I think your solution looks ok.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Find solution to differential equation(Check answer please)
Loading...