MHB Find the area by using disk method

  • Thread starter Thread starter jaychay
  • Start date Start date
  • Tags Tags
    Area Disk Method
jaychay
Messages
58
Reaction score
0
Untitled 1.png


The problem is to solve for the area R.

Can you please help me ?
I have tried to do it many times.

Thank you in advice.
 
Physics news on Phys.org
Volume V1 is on x - axis
Volume V2 is on y=1
 
$\displaystyle V_1 - V_2 = \pi \int_1^4 [f(x)]^2 \, dx - \pi \int_1^4 [f(x)-1]^2 \, dx = 4\pi$

$\displaystyle \int_1^4 [f(x)]^2 \, dx - \int_1^4 [f(x)]^2 - 2f(x) + 1 \, dx = 4$

$\displaystyle \cancel{\int_1^4 [f(x)]^2 \, dx} - \cancel{\int_1^4 [f(x)]^2 \, dx} + \int_1^4 2f(x) - 1 \, dx = 4$

note $\displaystyle \int_1^4 f(x) \, dx = R + 3$
can you finish?
 
skeeter said:
$\displaystyle V_1 - V_2 = \pi \int_1^4 [f(x)]^2 \, dx - \pi \int_1^4 [f(x)-1]^2 \, dx = 4\pi$

$\displaystyle \int_1^4 [f(x)]^2 \, dx - \int_1^4 [f(x)]^2 - 2f(x) + 1 \, dx = 4$

$\displaystyle \cancel{\int_1^4 [f(x)]^2 \, dx} - \cancel{\int_1^4 [f(x)]^2 \, dx} + \int_1^4 2f(x) - 1 \, dx = 4$

note $\displaystyle \int_1^4 f(x) \, dx = R + 3$
can you finish?
Untitled 2.png


Can you explain to me please where did (f(x)-1)^2 come from ? and why you have to put -1 behind f(x) ?
 
jaychay said:
https://www.physicsforums.com/attachments/10787

Can you explain to me please where did (f(x)-1)^2 come from ? and why you have to put -1 behind f(x) ?

rotating R about the line y = 1 using disks ... what is the radius of a disk in this case?
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...
Back
Top