Find the area of the quadrilateral PQRS

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Area
Click For Summary

Discussion Overview

The discussion revolves around finding the area of the quadrilateral PQRS, which is formed by extending the sides of a convex quadrilateral ABCD with a known area of 1. Participants explore various mathematical approaches to derive the area of PQRS, including vector methods and trigonometric solutions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a vector-based solution, defining the area of quadrilateral ABCD using cross products and concluding that the area of PQRS is 5.
  • Another participant reiterates the vector solution, confirming the same conclusion about the area of PQRS being 5.
  • Some participants suggest that the result may hold for all convex quadrilaterals with an area of 1, although this is not universally accepted.
  • There is an invitation for additional solutions, including those using different methods, indicating an openness to explore various approaches.

Areas of Agreement / Disagreement

Participants generally agree on the vector method leading to an area of 5 for PQRS, but there is uncertainty regarding whether this result applies universally to all convex quadrilaterals with an area of 1. Multiple views on the applicability of the result remain present.

Contextual Notes

The discussion does not resolve the implications of the findings for different types of quadrilaterals, nor does it clarify the assumptions underlying the vector method or the trigonometric approach mentioned.

Who May Find This Useful

Readers interested in geometric properties of quadrilaterals, vector mathematics, and alternative problem-solving methods in geometry may find this discussion relevant.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The convex quadrilateral $ABCD$ has area 1, and $AB$ is produced to $P$, $BC$ to $Q$, $CD$ to $R$, and $DA$ to $S$, such that $AB=BP$, $BC=CQ$, $CD=DR$, and $DA=AS$. Find the area of the quadrilateral $PQRS$.
 
Mathematics news on Phys.org
[sp]Here is a solution using vectors. Choose the origin $O$ to be an interior point of $ABCD$ and let $a,b,c,d,p,q,r,s$ be the vectors representing the corresponding points. The area of the triangle $OAB$ is the magnitude of the cross product $a\times b$. The area of $ABCD$ is $|a\times b + b\times c + c\times d + d\times a|$. (Note that the four cross product vectors are all oriented in the same direction – perpendicular to the plane of $ABCD$ – so their magnitudes add up.)

Next, $p = 2b-a$, $q = 2c-b$, $r = 2d-c$ and $s = 2a-d$. Thus the area of $PQRS$ is $$\bigl|(2b-a)\times(2c-b) + (2c-b)\times(2d-c) + (2d-c)\times(2a-d) + (2a-d)\times(2b-a)\bigr|.$$ Now use the facts that the cross product of a vector with itself is $0$ and that $b\times a = -a\times b$ to see that this expression reduces to $5|a\times b + b\times c + c\times d + d\times a|$. Therefore the area of $PQRS$ is $5$.[/sp]
 
Opalg said:
[sp]Here is a solution using vectors. Choose the origin $O$ to be an interior point of $ABCD$ and let $a,b,c,d,p,q,r,s$ be the vectors representing the corresponding points. The area of the triangle $OAB$ is the magnitude of the cross product $a\times b$. The area of $ABCD$ is $|a\times b + b\times c + c\times d + d\times a|$. (Note that the four cross product vectors are all oriented in the same direction – perpendicular to the plane of $ABCD$ – so their magnitudes add up.)

Next, $p = 2b-a$, $q = 2c-b$, $r = 2d-c$ and $s = 2a-d$. Thus the area of $PQRS$ is $$\bigl|(2b-a)\times(2c-b) + (2c-b)\times(2d-c) + (2d-c)\times(2a-d) + (2a-d)\times(2b-a)\bigr|.$$ Now use the facts that the cross product of a vector with itself is $0$ and that $b\times a = -a\times b$ to see that this expression reduces to $5|a\times b + b\times c + c\times d + d\times a|$. Therefore the area of $PQRS$ is $5$.[/sp]

Awesome, Opalg!(Yes) And thanks for participating!:)

I still welcome others who want to solve it using other route!:o
 
This type of question implies that the answer is the same for all Convex Quads with Area=1.

Picking a convenient one -- square.

View attachment 3184

We see the answer is: The area of a square with side = square root of (12 + 22).
 

Attachments

  • Capture.PNG
    Capture.PNG
    3.7 KB · Views: 122
RLBrown said:
This type of question implies that the answer is the same for all Convex Quads with Area=1.

Picking a convenient one -- square.

View attachment 3184

We see the answer is: The area of a square with side = square root of (12 + 22).

Thanks for your diagram and your solution post, RLBrown.

Another solution that solved the problem using trigonometric method is shown below:
View attachment 3239
Consider the diagram on the left: [TABLE="class: grid, width: 800"]
[TR]
[TD]Note that the area of the triangles

$CBA=\dfrac{(CB)(AB)\sin \angle ABC}{2}$

and

$CBP=\dfrac{(CB)(BP)\sin \angle PBC}{2}$

are the same since $AB=BP$ and

$\begin{align*}\sin \angle PBC&=\sin (180^{\circ}-\angle ABC)\\&=\sin \angle ABC\end{align*}$.[/TD]
[TD]Also, the area of the triangles

$QCB=\dfrac{(QC)(CP)\sin \angle QCP}{2}$

and

$CBP=\dfrac{(CB)(CP)\sin \angle PBC}{2}$

are the same since $QC=CB$ and

$\begin{align*}\sin \angle PBC&=\sin (180^{\circ}-\angle QCP)\\&=\sin \angle QCP \end{align*}$.[/TD]
[TD]This tells us

$2\times \text{area of the triangle $ABC$}=\text{area of the triangle $QBP$}$.[/TD]
[/TR]
[/TABLE]

Similar argument could be applied to the diagram on the right so that:

[TABLE="class: grid"]
[TR]
[TD]Note that the area of the triangles

$RDA=\dfrac{(RD)(DA)\sin \angle RDA}{2}$

and

$CDA=\dfrac{(CD)(DA)\sin \angle CDA}{2}$

are the same since $RD=CD$ and

$\begin{align*}\sin \angle CDA&=\sin (180^{\circ}-\angle RDA)\\&=\sin \angle RDA\end{align*}$.[/TD]
[TD]Also, the area of the triangles

$RDA=\dfrac{(DA)(AR)\sin \angle DAR}{2}$

and

$RAS=\dfrac{(AR)(AS)\sin \angle RAS}{2}$

are the same since $DA=AS$ and

$\begin{align*}\sin \angle RAS&=\sin (180^{\circ}-\angle RDA)\\&=\sin \angle RDA \end{align*}$.[/TD]
[TD]This tells us

$2\times \text{area of the triangle $ADC$}=\text{area of the triangle $SRD$}$.[/TD]
[/TR]
[/TABLE]

Hence, we must have

$\begin{align*}\text{area of the quadrilateral $PQRS$}&=4(\text{area of the triangle $ADC$})+4(\text{area of the triangle $ADC$})+\text{area of the convex quadrilateral $ABCD$})\\&=4\text{area of the convex quadrilateral $ABCD$}+\text{area of the convex quadrilateral $ABCD$}\\&=5\end{align*}$
 

Attachments

  • Find area PQRS.JPG
    Find area PQRS.JPG
    17 KB · Views: 128

Similar threads

Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
21
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K