View attachment 3239
Consider the diagram on the
left: [TABLE="class: grid, width: 800"]
[TR]
[TD]Note that the area of the triangles
$CBA=\dfrac{(CB)(AB)\sin \angle ABC}{2}$
and
$CBP=\dfrac{(CB)(BP)\sin \angle PBC}{2}$
are the same since $AB=BP$ and
$\begin{align*}\sin \angle PBC&=\sin (180^{\circ}-\angle ABC)\\&=\sin \angle ABC\end{align*}$.[/TD]
[TD]Also, the area of the triangles
$QCB=\dfrac{(QC)(CP)\sin \angle QCP}{2}$
and
$CBP=\dfrac{(CB)(CP)\sin \angle PBC}{2}$
are the same since $QC=CB$ and
$\begin{align*}\sin \angle PBC&=\sin (180^{\circ}-\angle QCP)\\&=\sin \angle QCP \end{align*}$.[/TD]
[TD]This tells us
$2\times \text{area of the triangle $ABC$}=\text{area of the triangle $QBP$}$.[/TD]
[/TR]
[/TABLE]
Similar argument could be applied to the diagram on the
right so that:
[TABLE="class: grid"]
[TR]
[TD]Note that the area of the triangles
$RDA=\dfrac{(RD)(DA)\sin \angle RDA}{2}$
and
$CDA=\dfrac{(CD)(DA)\sin \angle CDA}{2}$
are the same since $RD=CD$ and
$\begin{align*}\sin \angle CDA&=\sin (180^{\circ}-\angle RDA)\\&=\sin \angle RDA\end{align*}$.[/TD]
[TD]Also, the area of the triangles
$RDA=\dfrac{(DA)(AR)\sin \angle DAR}{2}$
and
$RAS=\dfrac{(AR)(AS)\sin \angle RAS}{2}$
are the same since $DA=AS$ and
$\begin{align*}\sin \angle RAS&=\sin (180^{\circ}-\angle RDA)\\&=\sin \angle RDA \end{align*}$.[/TD]
[TD]This tells us
$2\times \text{area of the triangle $ADC$}=\text{area of the triangle $SRD$}$.[/TD]
[/TR]
[/TABLE]
Hence, we must have
$\begin{align*}\text{area of the quadrilateral $PQRS$}&=4(\text{area of the triangle $ADC$})+4(\text{area of the triangle $ADC$})+\text{area of the convex quadrilateral $ABCD$})\\&=4\text{area of the convex quadrilateral $ABCD$}+\text{area of the convex quadrilateral $ABCD$}\\&=5\end{align*}$