Find the constants ## A ## and ## B ##

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Constants
AI Thread Summary
The discussion focuses on deriving the logarithmic integral, li(x), through integration by parts. It establishes that li(x) can be expressed in two forms involving constants A and B, where A is defined as -2/log(2) and B as -2/log(2) - 2/log^2(2). The proof demonstrates the integration steps leading to these constants while applying integration by parts effectively. Additionally, there is a mention of the Leibniz rule of differentiation as a foundational concept for understanding the integration process. The conclusion emphasizes the clarity of the integration approach and the significance of the constants in the final expressions for li(x).
Math100
Messages
813
Reaction score
229
Homework Statement
Define the logarithmic integral ## li(x) ## by ## li(x)=\int_{2}^{x}\frac{dt}{\log t} ##, for ## x>2 ##. Prove that ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##, for some constants ## A ## and ## B ## that you should determine.
Relevant Equations
None.
Proof:

Observe that
\begin{align*}
&li(x)=\int_{2}^{x}\frac{dt}{\log t}\\
&=[\frac{t}{\log t}]_{2}^{x}-\int_{2}^{x}t(\frac{1}{\log t})'dt\\
&=\frac{x}{\log x}-\frac{2}{\log 2}-\int_{2}^{x}t(-\frac{1}{t\log^2 t})dt\\
&=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2}\\
&=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A\\
\end{align*}
where ## A=-\frac{2}{\log 2} ##.
This implies ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##.
Since
\begin{align*}
&\int_{2}^{x}\frac{dt}{\log^2 t}=[\frac{t}{\log^2 t}]_{2}^{x}+2\int_{2}^{x}\frac{dt}{\log^3 t}\\
&=\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-\frac{2}{\log^2 2},\\
\end{align*}
it follows that ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Thus ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-(\frac{2}{\log 2}+\frac{2}{\log^2 2}) ##, where ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Therefore, ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and
## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##
where ## A=-\frac{2}{\log 2} ## and ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
 
Last edited:
Physics news on Phys.org
Math100 said:
Homework Statement:: Define the logarithmic integral ## li(x) ## by ## li(x)=\int_{2}^{x}\frac{dt}{\log t} ##, for ## x>2 ##. Prove that ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##, for some constants ## A ## and ## B ## that you should determine.
Relevant Equations:: None.

Proof:

Observe that
\begin{align*}
&li(x)=\int_{2}^{x}\frac{dt}{\log t}\\
&=[\frac{t}{\log t}]_{2}^{x}-\int_{2}^{x}t(\frac{1}{\log t})'dt\\
&=\frac{x}{\log x}-\frac{2}{\log 2}-\int_{2}^{x}t(-\frac{1}{t\log^2 t})dt\\
&=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2}\\
&=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A\\
\end{align*}
where ## A=-\frac{2}{\log 2} ##.
This implies ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##.
Since
\begin{align*}
&\int_{2}^{x}\frac{dt}{\log^2 t}=[\frac{t}{\log^2 t}]_{2}^{x}+2\int_{2}^{x}\frac{dt}{\log^3 t}\\
&=\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-\frac{2}{\log^2 2},\\
\end{align*}
it follows that ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Thus ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-(\frac{2}{\log 2}+\frac{2}{\log^2 2}) ##, where ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Therefore, ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and
## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##
where ## A=-\frac{2}{\log 2} ## and ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Looks good. The formula for integration by parts is
$$
\int_a^b u'(x)v(x)\,dx=\left[u(x)v(x)\right]_a^b - \int_a^b u(x)v'(x)\,dx
$$
and you applied it to ##u'(x)=1## twice. If you quote the formula under "relevant equations" and then simply note ##u'=1## then it is a bit easier to read.

A way to remember the formula is to note that it is at its core the Leibniz rule of differentiation:
\begin{align*}
(u\cdot v )'&=u'v +uv'\\
u'v&=(u\cdot v )' - uv'\\
\int u'v &=\int [(u\cdot v )' -uv']\\
\int u'v &=uv-\int uv'
\end{align*}

The quotient rule of differentiation is also simply the Leibniz rule:
$$
\left(\dfrac{u}{v}\right)'=(u\cdot v^{-1})'=u'v^{-1}+u\left(v^{-1}\right)'=\dfrac{u'v}{v^2}-\dfrac{uv'}{v^2}=\dfrac{u'v-uv'}{v^2}
$$

In other parts of mathematics, the Leibniz rule takes the form of the Jacobi-identity, or the defining equation for derivations. All these formulas are simply the Leibniz rule ##(u\cdot v )'=u'v +uv'## which is all one has to remember.
 
Back
Top