Find the constants ## A ## and ## B ##

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Constants
Click For Summary
SUMMARY

The discussion focuses on proving the logarithmic integral, denoted as ## li(x) ##, defined by the equation ## li(x)=\int_{2}^{x}\frac{dt}{\log t} ## for ## x>2 ##. The constants ## A ## and ## B ## are determined as ## A=-\frac{2}{\log 2} ## and ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##. The proof employs integration by parts and the Leibniz rule of differentiation, leading to the expressions for ## li(x) ## in terms of logarithmic functions and integrals. The final forms of the logarithmic integral are ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##.

PREREQUISITES
  • Understanding of logarithmic functions and their properties
  • Familiarity with integration techniques, specifically integration by parts
  • Knowledge of the Leibniz rule of differentiation
  • Basic calculus concepts, particularly definite integrals
NEXT STEPS
  • Study the application of integration by parts in various contexts
  • Explore advanced properties of logarithmic integrals in number theory
  • Learn about the implications of the logarithmic integral in prime number theory
  • Investigate the relationship between logarithmic integrals and asymptotic analysis
USEFUL FOR

Mathematicians, calculus students, and researchers in number theory who are interested in the properties and applications of logarithmic integrals and integration techniques.

Math100
Messages
822
Reaction score
231
Homework Statement
Define the logarithmic integral ## li(x) ## by ## li(x)=\int_{2}^{x}\frac{dt}{\log t} ##, for ## x>2 ##. Prove that ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##, for some constants ## A ## and ## B ## that you should determine.
Relevant Equations
None.
Proof:

Observe that
\begin{align*}
&li(x)=\int_{2}^{x}\frac{dt}{\log t}\\
&=[\frac{t}{\log t}]_{2}^{x}-\int_{2}^{x}t(\frac{1}{\log t})'dt\\
&=\frac{x}{\log x}-\frac{2}{\log 2}-\int_{2}^{x}t(-\frac{1}{t\log^2 t})dt\\
&=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2}\\
&=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A\\
\end{align*}
where ## A=-\frac{2}{\log 2} ##.
This implies ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##.
Since
\begin{align*}
&\int_{2}^{x}\frac{dt}{\log^2 t}=[\frac{t}{\log^2 t}]_{2}^{x}+2\int_{2}^{x}\frac{dt}{\log^3 t}\\
&=\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-\frac{2}{\log^2 2},\\
\end{align*}
it follows that ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Thus ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-(\frac{2}{\log 2}+\frac{2}{\log^2 2}) ##, where ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Therefore, ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and
## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##
where ## A=-\frac{2}{\log 2} ## and ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
 
Last edited:
Physics news on Phys.org
Math100 said:
Homework Statement:: Define the logarithmic integral ## li(x) ## by ## li(x)=\int_{2}^{x}\frac{dt}{\log t} ##, for ## x>2 ##. Prove that ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##, for some constants ## A ## and ## B ## that you should determine.
Relevant Equations:: None.

Proof:

Observe that
\begin{align*}
&li(x)=\int_{2}^{x}\frac{dt}{\log t}\\
&=[\frac{t}{\log t}]_{2}^{x}-\int_{2}^{x}t(\frac{1}{\log t})'dt\\
&=\frac{x}{\log x}-\frac{2}{\log 2}-\int_{2}^{x}t(-\frac{1}{t\log^2 t})dt\\
&=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2}\\
&=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A\\
\end{align*}
where ## A=-\frac{2}{\log 2} ##.
This implies ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}-\frac{2}{\log 2} ##.
Since
\begin{align*}
&\int_{2}^{x}\frac{dt}{\log^2 t}=[\frac{t}{\log^2 t}]_{2}^{x}+2\int_{2}^{x}\frac{dt}{\log^3 t}\\
&=\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-\frac{2}{\log^2 2},\\
\end{align*}
it follows that ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Thus ## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}-(\frac{2}{\log 2}+\frac{2}{\log^2 2}) ##, where ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Therefore, ## li(x)=\frac{x}{\log x}+\int_{2}^{x}\frac{dt}{\log^2 t}+A ## and
## li(x)=\frac{x}{\log x}+\frac{x}{\log^2 x}+2\int_{2}^{x}\frac{dt}{\log^3 t}+B ##
where ## A=-\frac{2}{\log 2} ## and ## B=-\frac{2}{\log 2}-\frac{2}{\log^2 2} ##.
Looks good. The formula for integration by parts is
$$
\int_a^b u'(x)v(x)\,dx=\left[u(x)v(x)\right]_a^b - \int_a^b u(x)v'(x)\,dx
$$
and you applied it to ##u'(x)=1## twice. If you quote the formula under "relevant equations" and then simply note ##u'=1## then it is a bit easier to read.

A way to remember the formula is to note that it is at its core the Leibniz rule of differentiation:
\begin{align*}
(u\cdot v )'&=u'v +uv'\\
u'v&=(u\cdot v )' - uv'\\
\int u'v &=\int [(u\cdot v )' -uv']\\
\int u'v &=uv-\int uv'
\end{align*}

The quotient rule of differentiation is also simply the Leibniz rule:
$$
\left(\dfrac{u}{v}\right)'=(u\cdot v^{-1})'=u'v^{-1}+u\left(v^{-1}\right)'=\dfrac{u'v}{v^2}-\dfrac{uv'}{v^2}=\dfrac{u'v-uv'}{v^2}
$$

In other parts of mathematics, the Leibniz rule takes the form of the Jacobi-identity, or the defining equation for derivations. All these formulas are simply the Leibniz rule ##(u\cdot v )'=u'v +uv'## which is all one has to remember.
 
  • Like
Likes   Reactions: Math100

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
2K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K