Undergrad Find the domain of a function of the form: ln(sin(1/x))

Click For Summary
The discussion focuses on determining the domain of the function ln(sin(1/x)). It emphasizes the need to analyze the intervals where sin(1/x) is positive, specifically when 0 + 2πk < 1/x < π + 2πk for integer k. Participants work through transforming this inequality to find the corresponding intervals for x. The transformation leads to identifying the conditions under which the logarithm is defined, ensuring that sin(1/x) remains positive. Ultimately, the discussion concludes with a clear understanding of the domain based on these derived intervals.
sergey_le
Messages
77
Reaction score
15
TL;DR
I know we need to find out when sin(pi/x)>0.
But I can 't do it
ללא שם.png


the solution

ללא שם (1).png
 
Last edited by a moderator:
Physics news on Phys.org
If you know the sine function, why can't you say when ##y=\sin x## is positive?
 
fresh_42 said:
If you know the sine function, why can't you say when ##y=\sin x## is positive?
Because it's not just a sinx.
It's sin(1/x)
 
sergey_le said:
Because it's not just a sinx.
It's sin(1/x)
Proceed step by step. When is ##y=\sin x > 0##? Which are the intervals of ##x## for which this is true? Let's change the variable names. When is ##Y=\sin X > 0##? If we know that, we get e.g. ##X\in (0,\pi)##.

With that we have now ##X=\dfrac{\pi}{x}##. That is ##0<X=\dfrac{\pi}{x} < \pi##. Can you restructure that in a way, that ##a<x<b## is the result?
 
fresh_42 said:
Proceed step by step. When is ##y=\sin x > 0##? Which are the intervals of ##x## for which this is true? Let's change the variable names. When is ##Y=\sin X > 0##? If we know that, we get e.g. ##X\in (0,\pi)##.

With that we have now ##X=\dfrac{\pi}{x}##. That is ##0<X=\dfrac{\pi}{x} < \pi##. Can you restructure that in a way, that ##a<x<b## is the result?
I know that sinx> 0 when 0+2πk<x<π+2πk.

I do not understand why it is okay to say that 0+2πk<π/x<π+2πk.
 
sergey_le said:
I know that sinx> 0 when 0+2πk<x<π+2πk.

I do not understand why it is okay to say that 0+2πk<π/x<π+2πk.
Let us write the sine function as ##\varphi = \sin \alpha##. Then you just said that ##\varphi >0## when ##2k\pi < \alpha < (2k+1)\pi## for ##k\in \mathbb{Z}##. Now how can we compare ##\sin \alpha## and ##\sin (\pi/x)##? We can do this by setting ##\alpha:=\pi/x.## Thus we get from the above inequality that
$$
\varphi =\sin \alpha = \sin \left(\dfrac{\pi}{x}\right) > 0 \text{ when } 2k\pi < \alpha = \dfrac{\pi}{x} < (2k+1)\pi \quad (k\in \mathbb{Z})
$$
Next question is: Can you transform ##2k\pi < \dfrac{\pi}{x} < (2k+1)\pi## into something like ##A < x < B##?
 
  • Like
Likes sergey_le
fresh_42 said:
Let us write the sine function as ##\varphi = \sin \alpha##. Then you just said that ##\varphi >0## when ##2k\pi < \alpha < (2k+1)\pi## for ##k\in \mathbb{Z}##. Now how can we compare ##\sin \alpha## and ##\sin (\pi/x)##? We can do this by setting ##\alpha:=\pi/x.## Thus we get from the above inequality that
$$
\varphi =\sin \alpha = \sin \left(\dfrac{\pi}{x}\right) > 0 \text{ when } 2k\pi < \alpha = \dfrac{\pi}{x} < (2k+1)\pi \quad (k\in \mathbb{Z})
$$
Next question is: Can you transform ##2k\pi < \dfrac{\pi}{x} < (2k+1)\pi## into something like ##A < x < B##?
Thank you very much, I finally understood
 
  • Like
Likes berkeman

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K