Find The Exact Value of A Definite Integral

Click For Summary
SUMMARY

The exact value of the definite integral $$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$ is determined to be $$2\sin{(2)}$$. The solution involves breaking the integral into two parts, where the first part is solved using the substitution $$u = x^3 - 3x^2 + 4x - 2$$, leading to the evaluation of $$\int_{-2}^2 \cos{(u)}\,du$$. The second part simplifies to zero due to the properties of odd functions over symmetric intervals.

PREREQUISITES
  • Understanding of definite integrals and integration techniques
  • Familiarity with trigonometric functions, specifically cosine
  • Knowledge of substitution methods in calculus
  • Ability to recognize and work with odd and even functions
NEXT STEPS
  • Study integration techniques involving trigonometric functions
  • Learn about substitution methods in calculus
  • Explore properties of odd and even functions in integration
  • Investigate advanced integral evaluation techniques, such as integration by parts
USEFUL FOR

Students, educators, and professionals in mathematics, particularly those focused on calculus and integral evaluation techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the exact value of the following definite integral:

$$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$
 
Physics news on Phys.org
Interesting problem! I noticed neither my calculator (TI-89) nor W|A could come up with the exact result. Here is my approach:

Let:

$$I=\int_0^2\left(3x^2-3x+1 \right)\cos\left(x^3-3x^2+4x-2 \right)\,dx$$

Observe that:

$$x^3-3x^2+4x-2=(x-1)^3+(x-1)$$

$$3x^2-3x+1=3x(x-1)+1$$

So, let:

$$u=x-1\,\therefore\,du=dx$$

and we have:

$$I=\int_{-1}^{1}\left(3u^2+3u+1 \right)\cos\left(u^3+u \right)\,du$$

$$I=\int_{-1}^{1}\left(3u^2+1 \right)\cos\left(u^3+u \right)\,du+3\int_{-1}^{1}u\cos\left(u^3+u \right)\,du$$

By the odd-function rule, this reduces to:

$$I=\int_{-1}^{1}\left(3u^2+1 \right)\cos\left(u^3+u \right)\,du$$

Let:

$$v=u^3+u\,\therefore\,dv=\left(3u^2+1 \right)\,du$$

and we have (using the even-function rule):

$$I=2\int_0^2\cos(v)\,dv=2\sin(2)\approx1.8185948536513634$$
 
What a great solution, MarkFL!(Sun)
 
anemone said:
Find the exact value of the following definite integral:

$$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$

I have a slightly different approach to Mark's...

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x^2 - 3x + 1 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \,dx } \\ = \int_0^2{ \left( 3x^2 - 6x + 4 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx} + \int_0^2{ \left( 3x - 3 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \,dx } \end{align*}[/math]

The first integral can be solved using [math]\displaystyle \begin{align*} u = x^3 - 3x^2 + 4x - 2 \implies du = \left( 3x^2 - 6x + 4 \right) \, dx \end{align*}[/math] giving

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x^2 - 6x + 4 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx} &= \int_{-2}^2{ \cos{(u)}\,du } \\ &= \left[ \sin{(u)} \right]_{-2}^2 \\ &= \sin{(2)} - \sin{(-2)} \\ &= \sin{(2)} + \sin{(2)} \\ &= 2\sin{(2)} \end{align*}[/math]

As for the second

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x - 3 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx } &= 3 \int_0^2{ \left( x - 1 \right) \cos{ \left[ \left( x - 1 \right) \left( x^2 - 2x + 2 \right) \right] } \, dx } \\ &= 3\int_0^2{ \left( x - 1 \right) \cos{ \left\{ \left( x - 1 \right) \left[ \left( x - 1 \right) ^2 + 1 \right] \right\} } \, dx } \end{align*}[/math]

Now let [math]\displaystyle \begin{align*} v = x - 1 \implies dv = dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} 3\int_{-1}^1{ v \cos{ \left[ v \left( v^2 + 1 \right) \right] } \, dv } &= 0 \end{align*}[/math]

because it's an odd function integrated over an even region.Therefore, the original integral equals [math]\displaystyle \begin{align*} 2\sin{(2)} \end{align*}[/math]
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K