Find The Exact Value of A Definite Integral

Click For Summary

Discussion Overview

The thread discusses the evaluation of a definite integral involving a polynomial multiplied by a cosine function. The focus is on finding the exact value of the integral through different approaches and techniques.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant notes that neither their calculator nor Wolfram Alpha could provide the exact result for the integral.
  • Another participant presents a solution that involves breaking the integral into two parts and applying a substitution for the first integral, leading to a result of \(2\sin(2)\).
  • The second part of the integral is analyzed, where a substitution is made, and it is concluded that this integral evaluates to zero due to the properties of odd functions over symmetric intervals.

Areas of Agreement / Disagreement

Participants present different approaches to solving the integral, but there is no consensus on the overall evaluation of the integral as a whole. The discussion remains open to further exploration of the problem.

Contextual Notes

The discussion does not resolve the overall evaluation of the integral, as it is based on different approaches that may or may not lead to the same conclusion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the exact value of the following definite integral:

$$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$
 
Physics news on Phys.org
Interesting problem! I noticed neither my calculator (TI-89) nor W|A could come up with the exact result. Here is my approach:

Let:

$$I=\int_0^2\left(3x^2-3x+1 \right)\cos\left(x^3-3x^2+4x-2 \right)\,dx$$

Observe that:

$$x^3-3x^2+4x-2=(x-1)^3+(x-1)$$

$$3x^2-3x+1=3x(x-1)+1$$

So, let:

$$u=x-1\,\therefore\,du=dx$$

and we have:

$$I=\int_{-1}^{1}\left(3u^2+3u+1 \right)\cos\left(u^3+u \right)\,du$$

$$I=\int_{-1}^{1}\left(3u^2+1 \right)\cos\left(u^3+u \right)\,du+3\int_{-1}^{1}u\cos\left(u^3+u \right)\,du$$

By the odd-function rule, this reduces to:

$$I=\int_{-1}^{1}\left(3u^2+1 \right)\cos\left(u^3+u \right)\,du$$

Let:

$$v=u^3+u\,\therefore\,dv=\left(3u^2+1 \right)\,du$$

and we have (using the even-function rule):

$$I=2\int_0^2\cos(v)\,dv=2\sin(2)\approx1.8185948536513634$$
 
What a great solution, MarkFL!(Sun)
 
anemone said:
Find the exact value of the following definite integral:

$$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$

I have a slightly different approach to Mark's...

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x^2 - 3x + 1 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \,dx } \\ = \int_0^2{ \left( 3x^2 - 6x + 4 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx} + \int_0^2{ \left( 3x - 3 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \,dx } \end{align*}[/math]

The first integral can be solved using [math]\displaystyle \begin{align*} u = x^3 - 3x^2 + 4x - 2 \implies du = \left( 3x^2 - 6x + 4 \right) \, dx \end{align*}[/math] giving

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x^2 - 6x + 4 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx} &= \int_{-2}^2{ \cos{(u)}\,du } \\ &= \left[ \sin{(u)} \right]_{-2}^2 \\ &= \sin{(2)} - \sin{(-2)} \\ &= \sin{(2)} + \sin{(2)} \\ &= 2\sin{(2)} \end{align*}[/math]

As for the second

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x - 3 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx } &= 3 \int_0^2{ \left( x - 1 \right) \cos{ \left[ \left( x - 1 \right) \left( x^2 - 2x + 2 \right) \right] } \, dx } \\ &= 3\int_0^2{ \left( x - 1 \right) \cos{ \left\{ \left( x - 1 \right) \left[ \left( x - 1 \right) ^2 + 1 \right] \right\} } \, dx } \end{align*}[/math]

Now let [math]\displaystyle \begin{align*} v = x - 1 \implies dv = dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} 3\int_{-1}^1{ v \cos{ \left[ v \left( v^2 + 1 \right) \right] } \, dv } &= 0 \end{align*}[/math]

because it's an odd function integrated over an even region.Therefore, the original integral equals [math]\displaystyle \begin{align*} 2\sin{(2)} \end{align*}[/math]
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K