anemone said:
Find the exact value of the following definite integral:
$$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$
I have a slightly different approach to Mark's...
[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x^2 - 3x + 1 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \,dx } \\ = \int_0^2{ \left( 3x^2 - 6x + 4 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx} + \int_0^2{ \left( 3x - 3 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \,dx } \end{align*}[/math]
The first integral can be solved using [math]\displaystyle \begin{align*} u = x^3 - 3x^2 + 4x - 2 \implies du = \left( 3x^2 - 6x + 4 \right) \, dx \end{align*}[/math] giving
[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x^2 - 6x + 4 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx} &= \int_{-2}^2{ \cos{(u)}\,du } \\ &= \left[ \sin{(u)} \right]_{-2}^2 \\ &= \sin{(2)} - \sin{(-2)} \\ &= \sin{(2)} + \sin{(2)} \\ &= 2\sin{(2)} \end{align*}[/math]
As for the second
[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x - 3 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx } &= 3 \int_0^2{ \left( x - 1 \right) \cos{ \left[ \left( x - 1 \right) \left( x^2 - 2x + 2 \right) \right] } \, dx } \\ &= 3\int_0^2{ \left( x - 1 \right) \cos{ \left\{ \left( x - 1 \right) \left[ \left( x - 1 \right) ^2 + 1 \right] \right\} } \, dx } \end{align*}[/math]
Now let [math]\displaystyle \begin{align*} v = x - 1 \implies dv = dx \end{align*}[/math] and the integral becomes
[math]\displaystyle \begin{align*} 3\int_{-1}^1{ v \cos{ \left[ v \left( v^2 + 1 \right) \right] } \, dv } &= 0 \end{align*}[/math]
because it's an odd function integrated over an even region.Therefore, the original integral equals [math]\displaystyle \begin{align*} 2\sin{(2)} \end{align*}[/math]