MHB Find The Exact Value of A Definite Integral

Click For Summary
The definite integral $$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$ was analyzed, revealing that neither calculators nor Wolfram Alpha could provide an exact result. The integral was split into two parts, with the first part solvable through substitution, yielding a result of \(2\sin(2)\). The second part, involving an odd function over a symmetric interval, equated to zero. Consequently, the exact value of the original integral is \(2\sin(2)\). This demonstrates the effectiveness of strategic substitution in solving complex integrals.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the exact value of the following definite integral:

$$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$
 
Mathematics news on Phys.org
Interesting problem! I noticed neither my calculator (TI-89) nor W|A could come up with the exact result. Here is my approach:

Let:

$$I=\int_0^2\left(3x^2-3x+1 \right)\cos\left(x^3-3x^2+4x-2 \right)\,dx$$

Observe that:

$$x^3-3x^2+4x-2=(x-1)^3+(x-1)$$

$$3x^2-3x+1=3x(x-1)+1$$

So, let:

$$u=x-1\,\therefore\,du=dx$$

and we have:

$$I=\int_{-1}^{1}\left(3u^2+3u+1 \right)\cos\left(u^3+u \right)\,du$$

$$I=\int_{-1}^{1}\left(3u^2+1 \right)\cos\left(u^3+u \right)\,du+3\int_{-1}^{1}u\cos\left(u^3+u \right)\,du$$

By the odd-function rule, this reduces to:

$$I=\int_{-1}^{1}\left(3u^2+1 \right)\cos\left(u^3+u \right)\,du$$

Let:

$$v=u^3+u\,\therefore\,dv=\left(3u^2+1 \right)\,du$$

and we have (using the even-function rule):

$$I=2\int_0^2\cos(v)\,dv=2\sin(2)\approx1.8185948536513634$$
 
What a great solution, MarkFL!(Sun)
 
anemone said:
Find the exact value of the following definite integral:

$$\int_0^2 (3x^2-3x+1)\cos (x^3-3x^2+4x-2)\,dx$$

I have a slightly different approach to Mark's...

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x^2 - 3x + 1 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \,dx } \\ = \int_0^2{ \left( 3x^2 - 6x + 4 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx} + \int_0^2{ \left( 3x - 3 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \,dx } \end{align*}[/math]

The first integral can be solved using [math]\displaystyle \begin{align*} u = x^3 - 3x^2 + 4x - 2 \implies du = \left( 3x^2 - 6x + 4 \right) \, dx \end{align*}[/math] giving

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x^2 - 6x + 4 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx} &= \int_{-2}^2{ \cos{(u)}\,du } \\ &= \left[ \sin{(u)} \right]_{-2}^2 \\ &= \sin{(2)} - \sin{(-2)} \\ &= \sin{(2)} + \sin{(2)} \\ &= 2\sin{(2)} \end{align*}[/math]

As for the second

[math]\displaystyle \begin{align*} \int_0^2{ \left( 3x - 3 \right) \cos{ \left( x^3 - 3x^2 + 4x - 2 \right) } \, dx } &= 3 \int_0^2{ \left( x - 1 \right) \cos{ \left[ \left( x - 1 \right) \left( x^2 - 2x + 2 \right) \right] } \, dx } \\ &= 3\int_0^2{ \left( x - 1 \right) \cos{ \left\{ \left( x - 1 \right) \left[ \left( x - 1 \right) ^2 + 1 \right] \right\} } \, dx } \end{align*}[/math]

Now let [math]\displaystyle \begin{align*} v = x - 1 \implies dv = dx \end{align*}[/math] and the integral becomes

[math]\displaystyle \begin{align*} 3\int_{-1}^1{ v \cos{ \left[ v \left( v^2 + 1 \right) \right] } \, dv } &= 0 \end{align*}[/math]

because it's an odd function integrated over an even region.Therefore, the original integral equals [math]\displaystyle \begin{align*} 2\sin{(2)} \end{align*}[/math]
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
4
Views
2K
Replies
10
Views
2K
Replies
10
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
6
Views
2K