MHB Find the integral of this function

  • Thread starter Thread starter kalvin
  • Start date Start date
  • Tags Tags
    Function Integral
kalvin
Messages
4
Reaction score
0
Find the integral of the function $f(x,y) = \frac{1}{(x^2 + y^2 + 1)^{\frac{3}{2}}} $
over the closed ball $\overline{B(a, 2)}$(i.e disk with radius 2 centered at point a). Letting $a \rightarrow \infty$, show that:

$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}f(x,y) dydx = 2\pi$
 
Last edited:
Physics news on Phys.org
kalvin said:
Find the integral of the function $f(x,y) = \frac{1}{(x^2 + y^2 + 1)^{\frac{3}{2}}} $
over the closed ball $\overline{B(a, 2)}$(i.e disk with radius 2 centered at point a). Letting $a \rightarrow \infty$, show that:

$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}f(x,y) dydx = 2\pi$
:confused: That wording cannot be correct: $a$ must surely be the radius of the disc, not its centre?
 

Similar threads

Back
Top