kalvin
- 4
- 0
Find the integral of the function $f(x,y) = \frac{1}{(x^2 + y^2 + 1)^{\frac{3}{2}}} $
over the closed ball $\overline{B(a, 2)}$(i.e disk with radius 2 centered at point a). Letting $a \rightarrow \infty$, show that:
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}f(x,y) dydx = 2\pi$
over the closed ball $\overline{B(a, 2)}$(i.e disk with radius 2 centered at point a). Letting $a \rightarrow \infty$, show that:
$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}f(x,y) dydx = 2\pi$
Last edited: