Find the intensity as function of y (interference between two propagating waves)

Click For Summary

Homework Help Overview

The discussion revolves around the interference of two waves: a spherical wave and a plane wave, with the goal of finding the intensity as a function of position on a screen. The original poster presents an equation for intensity and attempts to simplify it using approximations related to the distances involved.

Discussion Character

  • Exploratory, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • The original poster attempts to derive an expression for intensity using approximations for the distances involved in the wave propagation. Some participants question the correctness of the cosine function's argument and whether it should be squared, while others confirm the original poster's reasoning regarding the factor of 2 in the denominator.

Discussion Status

The discussion is ongoing, with participants exploring the validity of the original poster's calculations and questioning the provided solution from the textbook. There is no explicit consensus yet, as some participants suggest that the textbook answer may be incorrect.

Contextual Notes

Participants are considering the implications of the intensity being negative and are checking the assumptions made in the derivation of the intensity expression.

LCSphysicist
Messages
644
Reaction score
163
Homework Statement
.
Relevant Equations
.
Let a spherical wave propagate from the origin, $y = ADcos(wt-2\pi r/ \lambda)/r$. Also, let a plane wave propagate parallel to the x axis, $y = Acos(wt-2\pi r/ \lambda)$. At x = D there is a flat screen perpendicular to the x axis. Find the interference at the point y on the screen as function of the interference at y=0.$$ E = (A e^{i(wt-2\pi D/ \lambda)} + AD/r e^{i(wt-2\pi r/ \lambda)} ) $$

$$ I = Q* (A^2 + (AD/r )^2 + 2AD*A/r cos{(2\pi D/ \lambda -2\pi r/ \lambda)} ) $$
Now, i pretend to use $$r \approx D$$ outside the cos, and $$r = \sqrt{ D^2 + y^2} \approx D(1+(y^2)/(2*D^2))$$ inside it.
So that $$ I = Q* (A^2 + A^2 + 2A^2 cos{(2\pi (y^2)/(2*D \lambda))} ) = 2A^2(1+cos{(2\pi (y^2)/(2*D \lambda))}) = 4A^2cos(\pi (y^2)/(2*D \lambda) = I_o cos(\pi (y^2)/(2D \lambda)) $$

THe problem is that the solutions is ##I_o cos(\pi (y^2)/(D \lambda)) ## And i have no idea where is my mistake.
 

Attachments

  • m.png
    m.png
    4 KB · Views: 144
Physics news on Phys.org
Herculi said:
$$2A^2(1+cos{(2\pi (y^2)/(2*D \lambda))}) = 4A^2cos(\pi (y^2)/(2*D \lambda) $$
Shouldn't the cosine function be squared on the right-hand side?

Otherwise, your work looks correct to me. In particular, I think the factor of 2 in the denominator of the argument of the cosine function is correct.
Herculi said:
THe problem is that the solutions is ##I_o cos(\pi (y^2)/(D \lambda)) ## And i have no idea where is my mistake.
Did they have a square on the cosine function? If not, it is clearly wrong since the intensity cannot ever be negative.
 
  • Like
Likes   Reactions: LCSphysicist
TSny said:
Shouldn't the cosine function be squared on the right-hand side?

Otherwise, your work looks correct to me. In particular, I think the factor of 2 in the denominator of the argument of the cosine function is correct.

Did they have a square on the cosine function? If not, it is clearly wrong since the intensity cannot ever be negative.
Yes, i forgot the square in both answer. Thank you, so aparenttly the answer given by the book is wrong in fact.
 
Herculi said:
Thank you, so aparenttly the answer given by the book is wrong in fact.
It appears that way to me. Maybe someone else will confirm it.
 

Similar threads

Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
Replies
1
Views
2K
Replies
13
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
Replies
3
Views
2K