MHB Find the maximal number of subsets, k.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Subsets
Click For Summary
The problem involves finding the maximal number of distinct subsets of the set {1, 2, ..., 2018} such that the intersection of any two subsets forms an arithmetic progression. The suggested solution indicates that the maximum value of k can be determined through combinatorial reasoning and properties of arithmetic progressions. It highlights the importance of the structure of the subsets and their intersections. The discussion emphasizes the need for careful analysis of subset relationships to derive the maximal k. Ultimately, the goal is to establish a clear understanding of the conditions that govern the intersections of these subsets.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $A_1, A_2, … , A_k$ be distinct subsets of $\left \{ 1,2,...,2018 \right \}$,

such that for each $1 \leq i < j \leq k$ the intersection $A_i \cap A_j$ forms an arithmetic progression.

Find the maximal value of $k$.
 
Mathematics news on Phys.org
Here´s the suggested solution:

The answer is: $\binom{2018}{0}+\binom{2018}{1}+\binom{2018}{2}+\binom{2018}{3}.$
It can be readily seen, that the collection of all subsets having at most $3$ elements satisfies the conditions.

In order to complete the solution, we show, that the number of subsets having at least $3$ elements is not greater than $\binom{2018}{3}$.
Consider any subset $A = \left \{a_1,a_2,…,a_n \right \}$ having at least $3$ elements and let $a_1<a_2<…<a_n$. We assign a label $L(A) = (a_1, a_2,c)$ to each such subset, where

if $A$ is an arithmetic progression then $c = a_n.$

if not then $c$ is the first element breaking arithmetic progression $(a_1,a_2,…)$.

For example if $A = \left \{3,6,9,12,19,29 \right \}$ then $L(A) = \left \{ 3,6,19 \right \}.$

Now note, that different $3$ or more element sets have different labels, and therefore there are at most $\binom{2018}{3}$. Done.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K