MHB Find the maximal number of subsets, k.

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Subsets
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Let $A_1, A_2, … , A_k$ be distinct subsets of $\left \{ 1,2,...,2018 \right \}$,

such that for each $1 \leq i < j \leq k$ the intersection $A_i \cap A_j$ forms an arithmetic progression.

Find the maximal value of $k$.
 
Mathematics news on Phys.org
Here´s the suggested solution:

The answer is: $\binom{2018}{0}+\binom{2018}{1}+\binom{2018}{2}+\binom{2018}{3}.$
It can be readily seen, that the collection of all subsets having at most $3$ elements satisfies the conditions.

In order to complete the solution, we show, that the number of subsets having at least $3$ elements is not greater than $\binom{2018}{3}$.
Consider any subset $A = \left \{a_1,a_2,…,a_n \right \}$ having at least $3$ elements and let $a_1<a_2<…<a_n$. We assign a label $L(A) = (a_1, a_2,c)$ to each such subset, where

if $A$ is an arithmetic progression then $c = a_n.$

if not then $c$ is the first element breaking arithmetic progression $(a_1,a_2,…)$.

For example if $A = \left \{3,6,9,12,19,29 \right \}$ then $L(A) = \left \{ 3,6,19 \right \}.$

Now note, that different $3$ or more element sets have different labels, and therefore there are at most $\binom{2018}{3}$. Done.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top