MHB Find the Modulus & Argument of \(wz\)

Punch
Messages
44
Reaction score
0
The complex number w has modulus \(\sqrt{2}\) and argument \(-\frac{3\pi}{4}\), and the complex number \(z\) has modulus \(2\) and argument \(-\frac{\pi}{3}\). Find the modulus and argument of \(wz\), giving each answer exactly.
By first expressing w and \(z\) is the form \(x+iy\), find the exact real and imaginary parts of \(wz\).
I have a problem with finding the argument of \(wz\) and expressing \(w\) and \(z\) in the form \(x+iy\)
 
Last edited by a moderator:
Mathematics news on Phys.org
Re: complex numbers

Punch said:
The complex number w has modulus \sqrt{2} and argument -\frac{3\pi}{4}, and the complex number z has modulus 2 and argument -\frac{\pi}{3}. Find the modulus and argument of wz, giving each answer exactly.
By first expressing w and z is the form x+iy, find the exact real and imaginary parts of wz.
I have a problem with finding the argument of wz and expressing w and z in the form x+iy
Review how to multiply two complex numbers when they are written in polar form.

z = r cis(theta). You need to review polar form.
 
Punch said:
The complex number w has modulus \(\sqrt{2}\) and argument \(-\frac{3\pi}{4}\), and the complex number \(z\) has modulus \(2\) and argument \(-\frac{\pi}{3}\). Find the modulus and argument of \(wz\), giving each answer exactly.
By first expressing w and \(z\) is the form \(x+iy\), find the exact real and imaginary parts of \(wz\).
I have a problem with finding the argument of \(wz\) and expressing \(w\) and \(z\) in the form \(x+iy\)

If you need to solve this problem by converting to Cartesians, then

\[ \displaystyle \begin{align*} w &= \sqrt{2}\left[\cos{\left(-\frac{3\pi}{4}\right)} + i\sin{\left(-\frac{3\pi}{4}\right)}\right] \\ &= \sqrt{2}\left(-\frac{1}{\sqrt{2}} - \frac{i}{\sqrt{2}}\right) \\ &= -1 - i \end{align*} \]

and

\[ \displaystyle \begin{align*} z &= 2\left[\cos{\left(-\frac{\pi}{3}\right)} + i\sin{\left(-\frac{\pi}{3}\right)}\right] \\ &= 2\left(\frac{1}{2} - \frac{i\sqrt{3}}{2} \right) \\ &= 1 - i\sqrt{3} \end{align*} \]

So multiplying them together gives...

\[ \displaystyle \begin{align*} wz &= \left(-1-i\right)\left(1-i\sqrt{3}\right) \\ &= -1 + i\sqrt{3} - i + i^2\sqrt{3} \\ &= \left(-1 - \sqrt{3}\right) + i\left(-1 + \sqrt{3}\right) \end{align*} \]Can you evaluate the modulus and argument of this complex number?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top